CITY OF MERCER ISLAND

DEVELOPMENT SERVICES GROUP

9611 SE 36TH STREET | MERCER ISLAND, WA 98040

PHONE: 206.275.7605 | www.mercergov.org

Inspection Requests: Online: www.MyBuildingPermits.com VM: 206.275.7730

SECTION A: SMALL PROJECT STORMWATER SITE PLAN/REPORT

Narrative and Plan Submittal

<u>Instructions</u>: This is a template for a simplified Stormwater Report. This form or an equivalent must accompany your Building Permit Application if the answer is "Yes" to each statement below. If "No" is the answer to one or more of the statements below, a full Drainage Report is required and the project does not qualify for use of the Small Project Stormwater Site Plan/Report template.

Select "yes" or "no" for each statement below. Answer "yes" if the statement accurately describes your project.

Yes	No	Statement
✓		This project disturbs less than 1 acre and is not part of a larger common plan of development.
/		This project converts less than 3/4 acre to lawn or landscape areas.
~		This project will create, add, or replace (in any combination) 2,000 square feet or greater, but less than 5,000 square feet, of new plus replaced hard surface OR will have a land disturbing activity of 7,000 square feet or greater OR will result in a net increase of impervious surface of 500 square feet or greater.
✓		This project will not adversely impact a wetland, stream, water of the state, or change a natural drainage course.

Basic Project Information

Project Name: Hwang Lee Residence	
Site Address: 9772 SE 41st Street, Mercer Island, WA	
Total Lot Size: 0.2 ac	
Total Proposed Area to be Disturbed (including stockpile area):	sq ft
Total Volume of Proposed Cut and Fill: n/a	sq ft
Total Proposed New Hard Surface Area:	
Total Proposed Replaced Hard Surface Area: 3,264	sq_ft
Total Proposed Converted Pervious Surface Area (Native vegetation to lawn or landscape):	sq ft
Net Increase in Impervious Surface:	sq ft

Minimum Requirement #1: Preparation of Stormwater Site Plan

Written Project Description	ct Description
-----------------------------	----------------

This project includes the construction of a 2,428 square foot single family home, as well as replacement of the existing driveway. The project will include 3,431 square feet of new plus replaced hard surfaces. A StormTech SC-160LP on-site detention system which discharges to the adjacent Mercer Island municipal storm system will be utilized to meet Minimum Requirement #5.

Calculate new or replaced areas by surface type:

Lawn or Landscape Areas: 1,171	sq ft	Roof Area: 2,428	sq ft
	Patio:	sq ft Sidewalk: sq ft	sq ft

Attach Drainage Plan

Drainage Plan shall include the following:

- <u>Scaled drawing</u> with slopes, lot lines, any public-right-of-way and any easements, location of each on-site stormwater management BMP selected above and the areas served by them, buildings, roads, parking lots, driveways, landscape features, and areas of disturbed soils to be amended.
- The scaled drawing must be suitable to serve as a recordable document that will be attached to the property deed for each lot that includes on-site BMPs. Document submittal must follow the "Standard Formatting Requirements for Recording Documents" per King County: www.kingcounty.gov/depts/records-licensing/recorders-office/recording-documents.aspx
- Identify design details and maintenance instructions for each on-site BMP, and attach them to this Small Project Stormwater Site Plan/Report.

Mi	nimum Requirement #2 : Construction Stormwater Pollution Prevention
	Complete Section B of this submittal package: Construction Stormwater Pollution Prevention Plan Narrative (SWP
	Attach construction SWPPP
Mi	nimum Requirement #3 : Source Control of Pollution
availa storn	section contains practices and procedures to reduce the release of pollutants. Provide a description of all known, able and reasonable source control BMPs that will be, or are anticipated to be, used at this location to prevent nwater from coming into contact with pollutants. Additional BMPs are found in Volume IV of the 2014 Stormwater agement Manual for Western Washington (SWMMWW).
Chec	k the BMPs you will use:
✓	BMP S411 for Landscaping and Lawn/ Vegetation Management Operational practices for sites with landscaping
	BMP S421 for Parking and Storage of Vehicles. Public and commercial parking lots can be sources of suspended solids, metals, or toxic hydrocarbons such oils and greases.
	BMP S433 for Pools, Spas, Hot Tubs, Fountains Discharge from pools, hot tubs, and fountains can degrade ambient water quality. Routine maintenance activities generate a variety of wastes. Direct disposal of these waters to drainage system and waters of the state are not permitted without prior treatment and approval.
'	Other BMPs found in Volume IV of SWMMWW applicable to project:
Pro۱	7 BMPs for Maintenance of Stormwater Drainage and Treatment Systems vide maintenance and clearing of debris, sediments, and oil from stormwater collection, veyance, and treatment systems to obtain proper operation.

No source control BMPs are applicable for this project.

Minimum Requirement #4: Preservation of Natural Drainage Systems

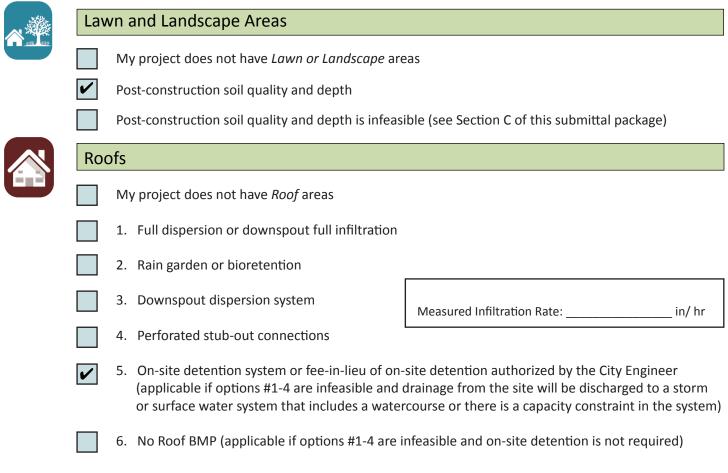
Natural drainage patterns shall be maintained and discharges from the project site shall occur at the natural location, to the maximum extent practicable. All outfalls require energy dissipation.

Choose the option below that best describes your project:

This site has existing drainage systems or outfalls. These items are shown on the Drainage Plan. Include the following items on the Drainage Plan:

- Pipe invert elevations, slopes, cover, and material
- Locations, grades, and direction of flow in ditches and swales, culverts, and pipes

Describe how these systems will be preserved:
Existing lot perimeter trench drain will be preserved and replaced if impacted by construction. The existing trench drain is not surveyed but exists per the previous owner. The trench drains follow the property lines and connect to the existing type 1 CB in SE 40th Street near the northeast corner of the property. The drain connection point is marked by an upright, broken PVC pipe. The trench drain will connect to an on site CB in the northeast corner of the lot to combine discharge with the detention facility, which will then drain to the Type 1 CB in SE 40th Street.
This site does not have any existing drainage systems or outfalls.
Additional Comments:
Proposed on-site detention system will discharge to the existing Mercer Island municipal storm system.


Minimum Requirement #5: On-site Stormwater Management

All projects meeting the thresholds for this Small Project Stormwater Report shall employ on-site stormwater management BMPs (See Small Project Stormwater Requirements Tip Sheet) to infiltrate, disperse, and retain stormwater runoff on-site to the extent feasible without causing flooding or erosion impacts.

List #1

For each category select the <u>first</u> feasible item on the list below. Document your justification for each infeasible BMP in Section C of this submittal package.

Check one option for each category below:

If #5 or #6 is selected, briefly describe why no Roof BMP is feasible (include detailed information in Section C of this submittal package):

Downspout full infiltration, perforated stub-outs, and bioretention are infeasible because the project site is located within "Areas Infeasible for Infiltration" on Mercer Island GIS Portal. Dispersion BMPs are infeasible because minimum flow paths cannot be met between the trench outlet and structures or property lines. Drainage from the on-site detention system will be discharged to the City of Mercer Island stormwater system. See attached detention design memo for details.

Minimum Requirement #5 : On-site Stormwater Management (cont.)				
ırfaces (such as driveway	, sidewalk,	parking lot, patio, etc.)	
does not have Other Hard Surfa	ce areas			
rsion		Measured Infiltration Rate: _	in/ hr	
e pavement, rain gardens, or b	oretention			
v dispersion or concentrated fl	ow dispersion			
e if options #1-3 are infeasible	and drainage fr	rom the site will be discharg	ged to a storm	
Hard Surface BMP (applicable	f options #1-3	are infeasible and on-site do	etention is not	
	ace BMP is fea	sible (include detailed infor	mation in	
as Infeasible for Infiltration nimum required flow path s. Drainage from the on-s	" on Mercer s cannot be i te detention	Island GIS Portal. Disposed between the trench system will be dischard	ersion BMPs outlet and	
	does not have Other Hard Surfarsion e pavement, rain gardens, or bive dispersion or concentrated flow etention system or fee-in-lieu or e if options #1-3 are infeasible as water system that includes a water system that	does not have Other Hard Surface areas rsion e pavement, rain gardens, or bioretention w dispersion or concentrated flow dispersion etention system or fee-in-lieu of on-site deten e if options #1-3 are infeasible and drainage fir water system that includes a watercourse or Hard Surface BMP (applicable if options #1-3 escribe why no Other Hard Surface BMP is featage): perforated stub-outs, and bioretention as Infeasible for Infiltration" on Mercer inimum required flow paths cannot be ess. Drainage from the on-site detention	rsion Measured Infiltration Rate: e pavement, rain gardens, or bioretention v dispersion or concentrated flow dispersion etention system or fee-in-lieu of on-site detention authorized by the City Re if options #1-3 are infeasible and drainage from the site will be discharge water system that includes a watercourse or there is a capacity constraint Hard Surface BMP (applicable if options #1-3 are infeasible and on-site detection why no Other Hard Surface BMP is feasible (include detailed infor	

Flow Control Exempt List

Proceed with this list if your project discharges directly to Lake Washington or if findings from a downstream analysis confirm that the downstream system is free of capacity constraints for a minimum of ¼ mile and a maximum of 1 mile.

For flow control exempt discharges, the BMPs listed below for Roofs and Other Hard Surfaces do not need to be evaluated in priority order. You can select any BMP from the lists provided below and do not need to document infeasibility in Section C of this submittal package.

Check <u>one</u> option for <u>each category</u> below:

Law	n and Landscape Areas
	My project does not have Lawn or Landscape areas
	Post-construction soil quality and depth

Minimum Requirement #5 : On-site Stormwater Management (cont.)

	Roc	ofs
		My project does not have <i>Roof</i> areas
		Downspout full infiltration
		Downspout dispersion system
		Perforated stub-out connections
		Each item above is infeasible
If "Each ite	m abov	ve is infeasible" is selected, briefly describe why no Roof BMP is feasible:
	Oth	ner Hard Surfaces (such as driveway, sidewalk, parking lot, patio, etc.)
		My project does not have Other Hard Surface areas
		Sheet flow dispersion
		Concentrated flow dispersion
If "Faala ita		Each item above is infeasible
If "Each ite	m abov	ve is infeasible" is selected, briefly describe why no Other Hard Surface BMP is feasible:

Instructions

This is a template for a simplified Construction Stormwater Pollution Prevention Plan ("Construction SWPPP"). If "No" is the answer to one or more of the statements on the first page of Section A of this submittal package, then a full Construction SWPPP is required and the project does not quality for the use of the Small Project Construction SWPPP Narrative template. If the project is less than the thresholds on the first page of Section A of this submittal package, then Minimum Requirement #2 still applies, but this section (Section B) or a full construction SWPPP is not required. You should include your Construction SWPPP in your contract with your builder. A copy of the Construction SWPPP must be located at the construction site or within reasonable access to the site for construction and inspection personnel at all times.

General Information on the Existing Site and Project

Describe the following in the Project Narrative box below (attach additional pages if necessary):

- Nature and purpose of the construction project
- Existing topography, vegetation, and drainage, and building structures
- Adjacent areas, including streams, lakes, wetlands, residential areas, and roads that might be affected by the
 construction project
- How upstream drainage areas may affect the site
- Downstream drainage leading from the site to the receiving body of water
- Areas on or adjacent to the site that are classified as critical areas
- Critical areas that receive runoff from the site up to one-quarter mile away
- Special requirements and provisions for working near or within critical areas
- Areas on the site that have potential erosion problems

Project Narrative:

The existing site contains a multi-story residence including a gravel driveway, concrete landscape walls, and rockery. The existing 2261 square-foot house will be replaced with a 2428 square-foot house. The existing driveway and landscape features will remain.

The site slopes own from south to north. Runoff flows off the property into existing City of Mercer Island stormwater infrastructure in SE 40th Street. The site is located in Drainage Basin 1, and the receiving waterbody is Lake Washington.

A StormTech SC-160LP detention system with 495 cubic feet of volume will be installed to mitigate the new and replaced impervious surface area. Refer to the drainage and erosion control plan, and the detention sizing memo for detention system details.

The site is located within a Potential Landslide Area, Seismic Hazard Area, and is within the boundary of Areas Infeasible for Infiltration on the Mercer Island GIS Portal. Roughly 60% of the site is within an Erosion Hazard Area and 7% of the site contains a protected slope per the Mercer Island GIS Portal.

Construction SWPPP Drawings

Locations and outlets of any dewatering systems.

Refer to the general Drawing Requirements in Stormwater Management Manual for Western Washington (SWMMWW) Volume I, Chapter 3.

`	, , ,		
Vi	cinity Map		
Prov	vide a map with enough detail to identify the location o	of the co	onstruction site, adjacent roads, and receiving waters.
Sit	е Мар		
Inclu	ude the following (where applicable):		
/	Legal description of the property boundaries or an illustration of property lines (including distances) on the drawings.	/	Final and interim grade contours as appropriate, drainage basins, and the direction of stormwater flow during and upon completion of construction.
/	North arrow.	~	Areas of soil disturbance, including all areas affected by clearing, grading, and excavation.
~	Existing structures and roads.		G. G. G.
/	Boundaries and identification of different soil types.		Locations where stormwater will discharge to surface waters during and upon completion of construction.
/	Areas of potential erosion problems.	/	Existing unique or valuable vegetation and vegetation to be preserved.
/	Any on-site and adjacent surface waters, critical areas, buffers, flood plain boundaries, and Shoreline Management boundaries.		Cut-and-fill slopes indicating top and bottom of slope catch lines.
/	Existing contours and drainage basins and the direction of flow for the different drainage areas.		Total cut-and-fill quantities and the method of disposal for excess material.
/	Where feasible, contours extend a minimum of 25 feet beyond property lines and extend sufficiently to depict existing conditions.	v	Stockpile; waste storage; and vehicle storage, maintenance, and washdown areas.
Te	mporary and Permanent BMPs		
Inclu	ude the following on site map (where applicable):		
	Locations for temporary and permanent swales, interceptor trenches, or ditches.		Details for bypassing off-site runoff around disturbed areas
/	Drainage pipes, ditches, or cut-off trenches associated with erosion and sediment control and stormwater management.	~	Locations of temporary and permanent stormwater treatment and/or flow control best management practices (BMPs).
/	Temporary and permanent pipe inverts and minimum slopes and cover.	/	Details for all structural and nonstructural erosion and sediment control (ESC) BMPs (including, but not limited to silt fences, construction entrances, sedimentation facilities etc.)
/	Grades, dimensions, and direction of flow in all ditches and swales, culverts, and pipes.	~	Details for any construction-phase BMPs or techniques used for Low Impact Development (LID) BMP protection.

Element 1: Preserve Vegetation / Mark Clearing Limits

The go	oal of this element is to preserve native vegetation and to clearly show the limits of disturbance.
This ele	ement does not apply to my project because:
	The site was cleared as part of clearing activity that is subject to an enforcement action and is re-vegetated. Restoration may be necessary to comply with Critical Area Regulations or NPDES requirements. Buffer Zones-BMP C102 may apply if Critical Areas exist on-site and buffer zones shall be protected.
	Other Reason / Additional Comments:
If it alo	as apply describe the stans you will take and select the best management practices (DMDs) you will use
V	The perimeter of the area to be cleared shall be marked prior to clearing operation with visible flagging, orange plastic barrier fencing and/or orange silt fencing as shown on the SWPPP site map. The total disturbed area shall be less than 7,000 square feet. Vehicles will only be allowed in the areas to be graded, so no compaction of the undeveloped areas will occur.
	n visibility silt fence will mark and protect the perimeter of the site.
Check t	the BMPs you will use:
	C101 Preserving Natural Vegetation C102 Buffer Zones C103 High Visibility Fence

Element 2: Construction Access

The go rack o	al of this element is to provide a stabilized construction entrance/exit to prevent or reduce or sediment ut.
This ele	ment does not apply to my project because:
/	The driveway to the construction area already exists and will be used for construction access. All equipment and vehicles will be restricted to staying on that existing impervious surface.
	Other Reason / Additional Comments:
f it <mark>doe</mark>	es apply, describe the steps you will take and select the BMPs you will use:
	A stabilized construction entrance will be installed prior to any vehicles entering the site, at the location shown on the SWPPP site map.
Additi	onal Comments:
Chack +	he RMPs you will use:

C105 Stabilized Construction Entrance / Exit

C106 Wheel Wash

C107 Construction Road / Parking Area Stabilization

Element 3: Control Flow Rates

The goal of this element is to construct retention or detention facilities when necessary to protect properties and waterways downstream of development sites from erosion and turbid discharges.

his el	ement does not apply to my project because:
	Other Reason / Additional Comments:
f it <mark>do</mark>	es apply, describe the steps you will take and select the BMPs you will use:
~	Flow rates will be controlled by using SWPPP Element 4 sediment controls and BMP T5.13 Post-Construction Soil Quality and Depth if necessary.
Addi	tional Comments:

Element 4: Sediment Control

The goal of this element is to construct sediment control BMPs that minimize sediment discharges from the site.							
This element does not apply to my project because:							
The site has already been stabilized and re-vegetated.							
Other Reason / Additional Comments:							
If it <u>does</u> apply, describe the steps you will take and select the BMPs you will use:							
Sediment control BMPs shall be placed at the locations shown on the SWPPP site map							
Additional Comments:							

Check the BMPs you will use:

C231 E	Brush Barrier	✓	C233 Silt Fence	C235 Wattle
C232 (Gravel Filter Berm		C23/1 Vegetated Strin	

Element 5: Stabilize Soils
The goal of this element is to stabilize exposed and unworked soils by implementing erosion control BMPs.
This element <u>does not</u> apply to my project because:
Other Reason / Additional Comments:
If it <u>does</u> apply, describe the steps you will take and select the BMPs you will use:
Exposed soils shall be worked during the week until they have been stabilized. Soil stockpiles will be located within the disturbed area shown on the SWPPP site map. Soil excavated for the foundation will be backfilled against the foundation and graded to drain away from the building. No soils shall remain exposed and unworked for more than 7 days from May 1 to September 30 or more than 2 days from October 1 to April 30. Once the disturbed landscape areas are graded, the grass areas will be amended using BMP T5.13 Post-Construction Soil Quality and Depth. All stockpiles will be covered with plastic or burlap if left unworked. Additional Comments:
Check the BMPs you will use:
C120 Temporary & C122 Nets & Blankets C124 Sodding C131 Gradient C235 Wattle Permanent Seeding
C121 Mulching C123 Plastic Covering C125 Topsoil / Composting C140 Dust Control

E	lem	ent	6:	Pro	tect	SI	opes
---	-----	-----	----	-----	------	----	------

								_		
The	וב חה ב	of thic o	lement is to	decign and	Construct	cut_and_fill	clones in a	mannarta	minimiza	aracian
1110	- evai	OI LIIIS E	iciliciit is to	ucsien and	i construct	Cut-anu-iii	SIUNES III a	IIIaiiii c i it	, 111111111111111111111111111111111111	CIUSIUII.

The go	The goal of this element is to design and construct cut-and-fill slopes in a manner to minimize erosion.						
This ele	ement <mark>does not</mark> apply to my projec	ct becau	ise:				
✓	No cut slopes over 4 feet high or 4 feet high will exceed 3 feet hor engineered slope protection.				foot vertical, and no fill slopes over is no requirement for additional		
	Other Reason / Additional Comn	nents:					
	oes apply, describe the steps you wi	vill take	and select the BMPs you w	vill use:			
Check	the BMPs you will use:						
	C120 Temporary & Permanent Seeding		C205 Subsurface Drains		C207 Check Dams		
	C204 Pipe Slope Drains		C206 Level Spreader		C208 Triangular Silt Dike (Geotextile-Encased Check Dam)		

Element 7: Protect Permanent Drain Inlets

The goal of this element is to protect storm drain inlets during construction to prevent stormwater runoff from entering the conveyance system without being filtered or treated.

This element <u>does not</u> apply to my project because:	
The site has open ditches in the right-of-way or private road right-of-way.	
There are no catch basins on or near the site.	
Other Reason / Additional Comments:	
If it <u>does</u> apply, describe the steps you will take and select the BMPs you will use:	
Catch basins on the site or immediately off site in the right-of-way are shown on the SWPPP site map. Story drain inlet protection shall be installed.	orm
Additional Comments:	

Check the BMPs you will use:

C220 Storm Drain Inlet Protection

Element 8: Stabilize Channels and Outlets

The goal of this element is to design, construct, and stabilize on-site conveyance channels to prevent erosion from entering existing stormwater outfalls and conveyance systems.

This element does not apply to my project because	This element	does not	apply to	my pro	ject because
---	--------------	----------	----------	--------	--------------

/	
	Construction will occur during the dry weather. No storm drainage channels or ditches shall be constructed either
	temporary or permanent. A small swale shall be graded to convey yard drainage around the structure using a
	shallow slope; it shall be seeded after grading and stabilized.
	Other Reason / Additional Comments:
If it <u>d</u>	oes apply, describe the steps you will take and select the BMPs you will use:
	A wattle shall be placed at the end of the swale to prevent erosion at the outlet of the swale
	A wattle shall be placed at the end of the swale to prevent erosion at the outlet of the swale.
Add	A wattle shall be placed at the end of the swale to prevent erosion at the outlet of the swale. itional Comments:
Add	
	itional Comments:

Element 9: Control Pollutants

The goal of this element is to design, install, implement and maintain BMPs to minimize the discharge of	
pollutants from material storage areas, fuel handling, equipment cleaning, management of waste materials,	, etc.

	utants from material storage areas, fuel handling, equipm	nent cleaning, management of waste materials, etc
This e	element does not apply to my project because:	
	Other Reason / Additional Comments:	
If it	t does apply, describe the steps you will take and select the BN	Ps you will use:
~	Any and all pollutants, chemicals, liquid products and other human health or the environment will be covered, containe shall be kept under cover in a secure location on-site. Conci	d, and protected from vandalism. All such products
Add	ditional Comments:	
Che	eck the BMPs you will use:	_
/	C151 Concrete Handling	C152 Sawcutting and Surfacing Pollution Prevention
/	C153 Material Delivery, Storage, and Containment	✓ C154 Concrete Washout Area

Element 10: Control De-watering
The goal of this element is to handle turbid or contaminated dewatering water separately from stormwater.
This element <u>does not</u> apply to my project because:
✓ No dewatering of the site is anticipated.
Other Reason / Additional Comments:
If it does apply describe the stars you will take and select the PMDs you will use:
If it <u>does</u> apply, describe the steps you will take and select the BMPs you will use: Additional Comments:
Check the BMPs you will use:

C206 Level Spreader

C236 Vegetated Filtration

C203 Water Bars

Element 11: Maintain Best Management Practices

The goal of this element is to maintain and repair all temporary and permanent erosion and sediment control BMPs to assure continued performance.

Describe the steps you will take:

Best Management Practices or BMPs shall be inspected and maintained during construction and removed within 30 days after the City Inspector or Engineer determines that the site is stabilized, provided that they may be removed when they are no longer needed.

Element 12: Manage the Project

The goal of this element is to ensure that the construction SWPPP is properly coordinated and that all BMPs are deployed at the proper time to achieve full compliance with City regulations throughout the project.

If it **does** apply, describe the steps you will take and select the BMPs you will use:

The Construction SWPPP will be implemented at all times. The applicable erosion control BMPs will be implemented in the following sequence:

/	1. Mark clearing limits
	2. Install stabilized construction entrance
~	3. Install protection for existing drainage systems and permanent drain inlets
/	4. Establish staging areas for storage and handling polluted material and BMPs

5. Install sediment control BMPs

6. Grade and install stabilization measures for disturbed areas

7. Maintain BMPs until site stabilization, at which time they may be removed

Additional Comments:

Existing driveway to be used as construction entrance.

Element 13: Protect Low Impact Development BMPs

The goal of this element is to protect on-site stormwater management BMPs (also known as "Low Impact Development BMPs") from siltation and compaction during construction. On-site stormwater management BMPs used for runoff from roofs and other hard surfaces include: full dispersion, roof downspout full infiltration or dispersion systems, perforated stubout connections, rain gardens, bioretention systems, permeable pavement, sheetflow dispersion, and concentrated flow dispersion. Methods for protecting on-site stormwater management BMPs include sequencing the construction to install these BMPs at the latter part of the construction grading operations, excluding equipment from the BMPs and the associated areas, and using the erosion and sedimentation control BMPs listed below.

the construction grading operations, excluding equipment from the BMPs and the associated areas, and using the erosion and sedimentation control BMPs listed below.			
Describe the construction s	equencing you will use:		
Additional Comments:			
N/A			
Select the BMPs you will us	e:		
C102 Buffer Zone	C103 High Visibility Fence	C231 Brush Barrier	
C233 Silt Fence	C234 Vegetated Strip		

Minimum Requirement #5 (On-Site Stormwater Management)

The following tables summarize infeasibility criteria that can be used to justify not using various on-site stormwater management best management practices (BMPs) for consideration for Minimum Requirement #5. This information is also included under the detailed descriptions of each BMP in the 2014 Stormwater Management Manual for Western Washington (Stormwater Manual), but is provided here in this worksheet for additional clarity and efficiency. Where any inconsistencies or lack of clarity exists, the requirements in the main text of the Stormwater Manual shall be applied. If a project is limited by one or more of the infeasibility criteria specified below, but an applicant is interested in implementing a specific BMP, a functionally equivalent design may be submitted to the City for review and approval. Evaluate the feasibility of the BMPs in priority order based on List #1 or #2 (Small Project Stormwater Requirements Tip Sheet and Stormwater Manual). Select the first BMP that is considered feasible for each surface type. Document the infeasibility (narrative description and rationale) for each BMP that was not selected. Only one infeasibility criterion needs to be selected for a BMP before evaluating the next BMP on the list. Attach additional pages for supporting information if necessary.

Note: If your project discharges directly to Lake Washington (flow control exempt) or a downstream analysis confirms that the downstream system is free of capacity constraints for a minimum of ¼ mile and a maximum of 1 mile, then you do not need to complete this worksheet, but should still refer to the infeasibility criteria when selecting BMPs.

Lawn and Landscaped Areas				
BMP and Applicable Lists	Infeasibility Criteria	Infeasibility Description and Rationale for Each BMP Not Selected		
Post-construction Soil Quality and Depth List #1 and #2	Siting and design criteria provided in BMP T5.13 (Stormwater Manual Volume V, Section 5.3) cannot be achieved. Lawn and landscape area is on till slopes greater than 33 percent.			
	Roofs			
BMP and Applicable Lists	Infeasibility Criteria	Infeasibility Description and Rationale for Each BMP Not Selected		
	Site setbacks and design criteria provided in BMP T5.30 (Stormwater Manual Volume V, Section 5.3) cannot be achieved.			
Full Dispersion	A 65 to 10 ratio of forested or native vegetation area to impervious area cannot be achieved.			
List #1 and #2	A minimum forested or native vegetation flowpath length of 100 feet (25 feet for sheet flow from a non-native pervious surface) cannot be achieved.			
Downspout Full	Evaluation of infiltration is not required per the Infiltration Infeasibility Map due to steep slopes, erosion hazards, or landslide hazards.			
Infiltration List #1 and #2	Site setbacks and design criteria provided in BMP T5.10A (Stormwater Manual Volume III, Section 3.1.1) cannot be achieved.			
	The lot(s) or site does not have out-wash or loam soils.			
	There is not at least 3 feet or more of permeable soil from the proposed final grade to the seasonal high groundwater table or other impermeable layer.			
	There is not at least 1 foot or more of permeable soil from the proposed bottom of the infiltration system to the seasonal high groundwater table or other impermeable layer.			

	Roofs (cont.)	
BMP and Applicable Lists	Infeasibility Criteria	Infeasibility Description and Rationale for Each BMP Not Selected
	Note: Criteria with setback distances are as measured from the bottom edge of the bioretention soil mix.	
	Citation of any of the following infeasibility criteria must be based on an evaluation of site-specific conditions and a written recommendation from an appropriate licensed professional (e.g., engineer, geologist, hydrogeologist):	
	Where professional geotechnical evaluation recommends infiltration not be used due to reasonable concerns about erosion, slope failure, or down-gradient flooding.	
	Within an area whose ground water drains into an erosion hazard, or landslide hazard area.	
Bioretention or Rain Gardens	Where the only area available for siting would threaten the safety or reliability of pre-existing underground utilities, pre-existing underground storage tanks, pre-existing structures, or pre-existing road or parking lot surfaces.	
List #1 (both) and List #2 (bioretention only)	Where the only area available for siting does not allow for a safe overflow pathway to stormwater drainage system or private storm sewer system.	
,,	Where there is a lack of usable space for bioretention areas at redevelopment sites, or where there is insufficient space within the existing public right-of-way on public road projects.	
	Where infiltrating water would threaten existing below grade basements.	
	Where infiltrating water would threaten shoreline structures such as bulkheads.	
	The following criteria can be cited as reasons for infeasibility without further justification (though some require professional services to make the observation):	
	Evaluation of infiltration is not required per the Infiltration Infeasibility Map due to steep slopes, erosion hazards, or landslide hazards	
	Within setback provided for BMP T7.30 (Stormwater Manual Volume V, Section 7.4)	
	Where they are not compatible with surrounding drainage system as determined by the city (e.g., project drains to an existing stormwater collection system whose elevation or location precludes connection to a properly functioning bioretention area).	

	Roofs (cont.)	
BMP and Applicable Lists	Infeasibility Criteria	Infeasibility Description and Rationale for Each BMP Not Selected
Applicable	The following criteria can be cited as reasons for infeasibility without further justification (though some require professional services to make the observation): Where land for bioretention is within an erosion hazard, or landslide hazard area (as defined by MICC 19.07.060). Where the site cannot be reasonably designed to locate bioretention areas on slopes less than 8 percent. Within 50 feet from the top of slopes that are greater than 20 percent and over 10 feet of vertical relief. For properties with known soil or groundwater contamination (typically federal Superfund sites or state cleanup sites under the Model Toxics Control Act [MTCA]): Within 100 feet of an area known to have deep soil contamination. Where groundwater modeling indicates infiltration will likely increase or change the direction of the migration of pollutants in the groundwater. Wherever surface soils have been found to be contaminated unless those soils are removed within 10	and Rationale for Each
	Any area where these facilities are prohibited by an approved cleanup plan under the state MTCA or Federal Superfund Law, or an environmental covenant under Chapter 64.70 RCW. Within 100 feet of a closed or active landfill. Within 10 feet of an underground storage tank and connecting underground pipes when the capacity of the tank and pipe system is 1,100 gallons or less. As used in these criteria, an underground storage tank means any tank used to store petroleum products, chemicals, or liquid hazardous wastes of which 10 percent or more of the storage volume (including volume in the connecting piping system) is beneath the ground surface. Within 100 feet of an underground storage tank and connecting underground pipes when the capacity of the tank and pipe system is greater than 1,100 gallons.	

BMP and Applicable Lists The following criteria can be cited as reasons for infeasibility without further justification (though some require professional services to make the observation): Where field testing indicates potential bioretention/rain garden sites have a measured (a.k.a., initial) native soil saturated hydraulic conductivity less than 0.30 inches per hour. A small-scale or large-scale PIT in accordance with Stormwater Manual Volume III, Section 3.3.6 (or an alternative small scale test specified by the City) shall be used to demonstrate infeasibility of bioretention areas. If the measured native soil infiltration rate is less than 0.30 in/hour, bioretention/rain garden BMPs are not required to be evaluated		Roofs (cont.)	
further justification (though some require professional services to make the observation): Where field testing indicates potential bioretention/rain garden sites have a measured (a.k.a., initial) native soil saturated hydraulic conductivity less than 0.30 inches per hour. A small-scale or large-scale PIT in accordance with Stormwater Manual Volume III, Section 3.3.6 (or an alternative small scale test specified by the City) shall be used to demonstrate infeasibility of bioretention areas. If the measured native soil infiltration rate is less than 0.30 in/hour,	Applicable	Infeasibility Criteria	and Rationale for Each
as an option in List #1 or List #2. In these slow draining soils, a bioretention area with an underdrain may be used to treat pollution-generating surfaces to help meet Minimum Requirement #6, Runoff Treatment. If the underdrain is elevated within a base course of gravel, it will also provide some modest flow reduction benefit that will help achieve Minimum Requirement #7. Where the minimum vertical separation of 3 feet to the seasonal high groundwater elevation or other impermeable layer would not be achieved below bioretention that would serve a drainage area that exceeds the following thresholds (and cannot reasonably be broken down into amounts smaller than indicated): o 5,000 square feet of pollution-generating impervious surface (PGIS) o 10,000 square feet of impervious area o 0.75 acres of lawn and landscape. Where the minimum vertical separation of 1 foot to the seasonal high groundwater or other impermeable layer would not be achieved below bioretention that would serve a drainage area less than the above thresholds. Within 100 feet of a drinking water well, or a spring used for drinking water supply. Within 10 feet of small on-site sewage disposal drainfield, including reserve areas, and grey water reuse systems. For setbacks from a "large on-site sewage disposal system," see Chapter 246-272B WAC.	Bioretention or Rain Gardens	further justification (though some require professional services to make the observation): Where field testing indicates potential bioretention/rain garden sites have a measured (a.k.a., initial) native soil saturated hydraulic conductivity less than 0.30 inches per hour. A small-scale or large-scale PIT in accordance with Stormwater Manual Volume III, Section 3.3.6 (or an alternative small scale test specified by the City) shall be used to demonstrate infeasibility of bioretention areas. If the measured native soil infiltration rate is less than 0.30 in/hour, bioretention/rain garden BMPs are not required to be evaluated as an option in List #1 or List #2. In these slow draining soils, a bioretention area with an underdrain may be used to treat pollution-generating surfaces to help meet Minimum Requirement #6, Runoff Treatment. If the underdrain is elevated within a base course of gravel, it will also provide some modest flow reduction benefit that will help achieve Minimum Requirement #7. Where the minimum vertical separation of 3 feet to the seasonal high groundwater elevation or other impermeable layer would not be achieved below bioretention that would serve a drainage area that exceeds the following thresholds (and cannot reasonably be broken down into amounts smaller than indicated): o 5,000 square feet of pollution-generating impervious surface (PGIS) o 10,000 square feet of impervious area o 0.75 acres of lawn and landscape. Where the minimum vertical separation of 1 foot to the seasonal high groundwater or other impermeable layer would not be achieved below bioretention that would serve a drainage area less than the above thresholds. Within 100 feet of a drinking water well, or a spring used for drinking water supply. Within 10 feet of small on-site sewage disposal drainfield, including reserve areas, and grey water reuse systems. For setbacks from a	

	Roofs (cont.)		
BMP and Applicable Lists	Infeasibility Criteria	Infeasibility Description and Rationale for Each BMP Not Selected	
Downspout Dispersion Systems List #1 and #2	Site setbacks and design criteria provided in BMP T5.10B (Stormwater Manual Volume III, Section 3.1.2) cannot be achieved. For splash blocks, a vegetated flowpath at least 50 feet in length from the downspout to the downstream property line, structure, stream, wetland, slope over 15 percent, or other impervious surface is not feasible. For trenches, a vegetated flowpath of at least 25 feet in between the outlet of the trench and any property line, structure, stream, wetland, or impervious surface is not feasible. A vegetated flowpath of at least 50 feet between the outlet of the trench and any slope steeper than 15 percent is not feasible.		
Perforated Stub-Out Connections List #1 and #2	Evaluation of infiltration is not required per the Infiltration Infeasibility Map due to steep slopes, erosion hazards, or landslide hazards For sites with septic systems, the only location available for the perforated portion of the pipe is located up-gradient of the drainfield primary and reserve areas. This requirement can be waived if site topography will clearly prohibit flows from intersecting the drainfield or where site conditions (soil permeability, distance between systems, etc.) indicate that this is unnecessary. Site setbacks and design criteria provided in BMP T5.10C (Stormwater Manual Volume III, Section 3.1.3) cannot be achieved. There is not at least 1 foot of permeable soil from the proposed bottom (final grade) of the perforated stub-out connection trench to the highest estimated groundwater table or other impermeable layer. The only location available for the perforated stub-out connection		
On-site Detention List #1 and #2	is under impervious or heavily compacted soils. Project discharges directly to Lake Washington. Findings from a 1/4 mile downstream analysis confirm that the downstream system is free of capacity constraints. Site setbacks and design criteria provided in the Stormwater Manual (Volume III, Section 3.2.2) cannot be achieved.		

	Other Hard Surfaces	
BMP and Applicable Lists	Infeasibility Criteria	Infeasibility Description and Rationale for Each BMP Not Selected
Full Dispersion List #1 and #2	Site setbacks and design criteria provided in BMP T5.30 (Stormwater Manual Volume V, Section 5.3) cannot be achieved. A 65 to 10 ratio of forested or native vegetation area to impervious area cannot be achieved. A minimum forested or native vegetation flowpath length of 100 feet (25 feet for sheet flow from a non-native pervious surface) cannot be achieved.	
Permeable Pavement List #1 and #2	Citation of any of the following infeasibility criteria must be based on an evaluation of site-specific conditions and a written recommendation from an appropriate licensed professional (e.g., engineer, geologist, hydrogeologist): Where professional geotechnical evaluation recommends infiltration not be used due to reasonable concerns about erosion, slope failure, or downgradient flooding. Within an area whose ground water drains into an erosion hazard, or landslide hazard area. Where infiltrating and ponded water below the new permeable pavement area would compromise adjacent impervious pavements. Where infiltrating water below a new permeable pavement area would threaten existing below grade basements. Where infiltrating water would threaten shoreline structures such as bulkheads. Down slope of steep, erosion prone areas that are likely to deliver sediment. Where fill soils are used that can become unstable when saturated. Excessively steep slopes where water within the aggregate base layer or at the subgrade surface cannot be controlled by detention structures and may cause erosion and structural failure, or where surface runoff velocities may preclude adequate infiltration at the pavement surface. Where permeable pavements cannot provide sufficient strength to support heavy loads at industrial facilities such as ports. Where installation of permeable pavement would threaten the safety or reliability of pre-existing underground utilities, pre-existing underground storage tanks, or pre-existing road subgrades.	

	Other Hard Surfaces (cont.)	
BMP and Applicable Lists	Infeasibility Criteria	Infeasibility Description and Rationale for Each BMP Not Selected
	The following criteria can be cited as reasons for infeasibility without further justification (though some require professional services to make the observation):	
	Evaluation of infiltration is not required per the Infiltration Infeasibility Map due to steep slopes, erosion hazards, or landslide hazards	
	Within an area designated as an erosion hazard, or landslide hazard.	
	Within 50 feet from the top of slopes that are greater than 20 percent.	
	For properties with known soil or groundwater contamination (typically federal Superfund sites or state cleanup sites under MTCA):	
	 Within 100 feet of an area known to have deep soil contamination. 	
Permeable Pavement (cont.)	 Where groundwater modeling indicates infiltration will likely increase or change the direction of the migration of pollutants in the groundwater. 	
(cont.)	 Wherever surface soils have been found to be contaminated unless those soils are removed within 10 horizontal feet from the infiltration area. 	
	 Any area where these facilities are prohibited by an approved cleanup plan under the state MTCA or Federal Superfund Law, or an environmental covenant under Chapter 64.70 RCW. 	
	Within 100 feet of a closed or active landfill.	
	Within 100 feet of a drinking water well, or a spring used for drinking water supply, if the pavement is a pollution-generating surface.	
	Within 10 feet of a small on-site sewage disposal drainfield, including reserve areas, and grey water reuse systems. For setbacks from a "large on-site sewage disposal system," see Chapter 246-272B WAC.	
	Within 10 feet of any underground storage tank and connecting underground pipes, regardless of tank size. As used in these criteria, an underground storage tank means any tank used to store petroleum products, chemicals, or liquid hazardous wastes of which 10 percent or more of the storage volume (including volume in the connecting piping system) is beneath the ground surface.	
	At multi-level parking garages, and over culverts and bridges.	
	Where the site design cannot avoid putting pavement in areas likely to have long-term excessive sediment deposition after construction (e.g., construction and landscaping material yards).	

	Other Hard Surfaces (cont.)	
BMP and Applicable Lists	Infeasibility Criteria	Infeasibility Description and Rationale for Each BMP Not Selected
Permeable Pavement (cont.)	The following criteria can be cited as reasons for infeasibility without further justification (though some require professional services to make the observation): Where the site cannot reasonably be designed to have: • Porous asphalt surface < 5% slope • Pervious concrete surface < 10% slope • Permeable interlocking concrete pavement surface < 12% slope • Grid systems < 6-12% slope (check with manufacturer and local supplier to confirm maximum slope) Where the subgrade soils below a pollution-generating permeable pavement (e.g., road or parking lot) do not meet the soil suitability criteria for providing treatment. See soil suitability criteria for treatment in the Stormwater Manual Volume III, Section 3.3.7. Note: In these instances, the city may approve installation of a 6 inch sand filter layer meeting city specifications for treatment as a condition of construction. Where underlying soils are unsuitable for supporting traffic loads when saturated. Soils meeting a California Bearing Ratio of 5 percent are considered suitable for residential access roads. Where replacing existing impervious surfaces unless the existing surface is a non-pollution generating surface over an outwash soil with a saturated hydraulic conductivity of 4 inches per hour or greater. Where appropriate field testing indicates soils have a measured (a.k.a., initial) subgrade soil saturated hydraulic conductivity less than 0.3 inches per hour. Only small-scale PIT or large-scale PIT methods in accordance with Stormwater Manual Volume III, Section 3.3.6 (or an alternative small scale test specified by the City) shall be used to evaluate infeasibility of permeable pavement areas. (Note: in these instances, unless other infeasibility restrictions apply, roads and parking lots may be built with an underdrain, preferably elevated within the base course, if flow control benefits are desired.) Roads that receive more than very low traffic volumes, and areas having more than very low truck traffic. Roads with a projected average dai	BMP Not Selected

	Other Hard Surfaces (cont.)	
BMP and Applicable Lists	Infeasibility Criteria	Infeasibility Description and Rationale for Each BMP Not Selected
	The following criteria can be cited as reasons for infeasibility without further justification (though some require professional services to make the observation):	
Permeable Pavement	At sites defined as "high-use sites" (refer to the Glossary in the Stormwater Manual Volume I).	
(cont.)	In areas with "industrial activity" as identified in 40 CFR 122.26(b)(14).	
	Where the risk of concentrated pollutant spills is more likely such as gas stations, truck stops, and industrial chemical storage sites.	
	Where routine, heavy applications of sand occur in frequent snow zones to maintain traction during weeks of snow and ice accumulation.	
	Where the seasonal high groundwater or an underlying impermeable/ low permeable layer would create saturated conditions within 1 foot of the bottom of the lowest gravel base course.	
	Note: Criteria with setback distances are as measured from the bottom edge of the bioretention soil mix.	
	Citation of any of the following infeasibility criteria must be based on an evaluation of site-specific conditions and a written recommendation from an appropriate licensed professional (e.g., engineer, geologist, hydrogeologist):	
Bioretention or Rain Gardens	Where professional geotechnical evaluation recommends infiltration not be used due to reasonable concerns about erosion, slope failure, or down-gradient flooding.	
List #1 (both) and List #2 (bioretention	Within an area whose ground water drains into an erosion hazard, or landslide hazard area.	
only)	Where the only area available for siting would threaten the safety or reliability of pre-existing underground utilities, pre-existing underground storage tanks, pre-existing structures, or pre-existing road or parking lot surfaces.	
	Where the only area available for siting does not allow for a safe overflow pathway to stormwater drainage system or private storm sewer system.	
	Where there is a lack of usable space for bioretention areas at redevelopment sites, or where there is insufficient space within the existing public right-of-way on public road projects.	
	Where infiltrating water would threaten existing below grade basements.	
	Where infiltrating water would threaten shoreline structures such as bulkheads.	

	Other Hard Surfaces (cont.)	
BMP and Applicable Lists	Infeasibility Criteria	Infeasibility Description and Rationale for Each BMP Not Selected
	The following criteria can be cited as reasons for infeasibility without further justification (though some require professional services to make the observation): Where evaluation of infiltration is not required per the Infiltration Infeasibility Map due to steep slopes, erosion hazards, or landslide hazards. Within setback provided for BMP T7.30 (Stormwater Manual Volume V, Section 7.4) Where they are not compatible with surrounding drainage system as determined by the city (e.g., project drains to an existing stormwater collection system whose elevation or location precludes connection to a properly functioning bioretention area). Where land for bioretention is within an erosion hazard, or landslide hazard area (as defined by MICC 19.07.060). Where the site cannot be reasonably designed to locate bioretention areas on slopes less than 8 percent. Within 50 feet from the top of slopes that are greater than 20 percent and over 10 feet of vertical relief. For properties with known soil or groundwater contamination (typically federal Superfund sites or state cleanup sites under the Model Toxics Control Act [MTCA]): Within 100 feet of vertical relief. Where groundwater modeling indicates infiltration will likely increase or change the direction of the migration of pollutants in the groundwater. Wherever surface soils have been found to be contaminated unless those soils are removed within 10 horizontal feet from the infiltration area. Any area where these facilities are prohibited by an approved cleanup plan under the state MTCA or Federal Superfund Law, or an environmental covenant under Chapter 64.70 RCW. Within 100 feet of a closed or active landfill. Within 10 feet of an underground storage tank and connecting underground pipes when the capacity of the tank and pipe system is 1,100 gallons or less. As used in these criteria, an underground storage tank means any tank used to store petroleum products, chemicals, or liquid hazardous wastes of which 10 percent or more of the storage	and Rationale for Each
	volume (including volume in the connecting piping system) is beneath the ground surface.	

	Other Hard Surfaces (cont.)	
BMP and Applicable Lists	Infeasibility Criteria	Infeasibility Description and Rationale for Each BMP Not Selected
	The following criteria can be cited as reasons for infeasibility without further justification (though some require professional services to make the observation): Within 100 feet of an underground storage tank and connecting	
	underground pipes when the capacity of the tank and pipe system is greater than 1,100 gallons.	
Bioretention or Rain Gardens (cont.)	Where field testing indicates potential bioretention/rain garden sites have a measured (a.k.a., initial) native soil saturated hydraulic conductivity less than 0.30 inches per hour. A small-scale or large-scale PIT in accordance with Stormwater Manual Volume III, Section 3.3.6 (or an alternative small scale test specified by the City) shall be used to demonstrate infeasibility of bioretention areas. If the measured native soil infiltration rate is less than 0.30 in/hour, bioretention/rain garden BMPs are not required to be evaluated as an option in List #1 or List #2. In these slow draining soils, a bioretention area with an underdrain may be used to treat pollution-generating surfaces to help meet Minimum Requirement #6, Runoff Treatment. If the underdrain is elevated within a base course of gravel, it will also provide some modest flow reduction benefit that will help achieve Minimum Requirement #7. Where the minimum vertical separation of 3 feet to the seasonal high groundwater elevation or other impermeable layer would not be achieved below bioretention that would serve a drainage area that exceeds the following thresholds (and cannot reasonably be broken down into amounts smaller than indicated):	
	o 5,000 square feet of pollution-generating impervious surface (PGIS)	
	o 10,000 square feet of impervious area o 0.75 acres of lawn and landscape.	
	Where the minimum vertical separation of 1 foot to the seasonal high groundwater or other impermeable layer would not be achieved below bioretention that would serve a drainage area less than the above thresholds	
	Within 100 feet of a drinking water well, or a spring used for drinking water supply.	
	Within 10 feet of small on-site sewage disposal drainfield, including reserve areas, and grey water reuse systems. For setbacks from a "large on-site sewage disposal system," see Chapter 246-272B WAC.	

	Other Hard Surfaces (cont.)	
BMP and Applicable Lists	Infeasibility Criteria	Infeasibility Description and Rationale for Each BMP Not Selected
Sheet Flow Dispersion List #1 and #2	Site setbacks and design criteria provided in BMP T5.12 (Stormwater Manual Volume V, Section 5.3) cannot be achieved. Positive drainage for sheet flow runoff cannot be achieved. Area to be dispersed (e.g., driveway, patio) cannot be graded to have less than a 15 percent slope. For flat to moderately sloped areas, at least a 10 foot-wide vegetation buffer for dispersion of the adjacent 20 feet of contributing surface cannot be achieved. For variably sloped areas, at least a 25 foot vegetated flowpath between berms cannot be achieved.	
Concentrated Flow Dispersion List #1 and #2	Site setbacks and design criteria provided in BMP T5.11 (Stormwater Manual Volume V, Section 5.3) cannot be achieved. A minimum 3 foot length of rock pad and 50 foot flowpath OR a dispersion trench and 25 foot flowpath for every 700 square feet of drainage area followed with applicable setbacks cannot be achieved. More than 700 square feet drainage area drains to any dispersion device.	
On-site Detention List #1 and #2	Project discharges directly to Lake Washington. Findings from a 1/4 mile downstream analysis confirm that the downstream system is free of capacity constraints. Site setbacks and design criteria provided in the Stormwater Manual (Volume III, Section 3.2.2) cannot be achieved.	

Attachments Required (Check off required items that are attached)
Site Plan showing, to scale:
Areas of undisturbed native vegetation (no amendment required)
New planting beds (amendment required)
New turf areas (amendment required)
Type of soil improvement proposed for each area
Soil test results (required if proposing custom amendment rates)
Product test results for proposed amendments

Total Amendment / Topsoil / Mulch for All Areas

Calculate the quantities needed for the entire site based on all of the areas identified on the Site Plan and the calculations on the following page(s):

Product	Total Quantity (CY)	Test Results
Product #1: CEDAR GROVE COMPOST	7.12 CY	53.1% organic matter 18:1C:N ratio "Stable"? yes no
Product #2:	CY	% organic matter C:N ratio "Stable"? yes no
Product #3:	CY	% organic matter C:N ratio

Amendment /	Topsoil / Mulch by Area	
For each identified are	ea on your Site Plan, provide the following information:	(Use additional sheets if necessary)
1 Area #	(should match identified Area # on Site Plan)	
Planting type:	Turf Undisturbed native vegetation Planting Beds Other:	
Pre-Approved A	Amendment Method	
Amend with compost	Turf: $\underline{967}$ SF x 5.4 CY \div 1,000 SF = $\underline{5.22}$ CY Planting beds: $\underline{204}$ SF x 9.3 CY \div 1,000 SF = $\underline{1.90}$ CY Total Quantity = $\underline{7.12}$ CY Scarification depth: 8 inches	CEDAR GROVE Product: COMPOST
Stockpile and amend	Turf: SF x 5.4 CY ÷ 1,000 SF = CY Planting beds: SF x 9.3 CY ÷ 1,000 SF= CY Total Quantity = CY Scarification depth: 8 inches	Product:
Topsoil import	Turf: SF x 18.6 CY÷1,000 SF = CY Planting beds: SF x 18.6 CY ÷ 1,000 SF= CY Total Quantity = CY Scarification depth: 6 inches	Product:
Custom Amend	ment	
Amend with compost	Attach information on bulk density, percent organic matter, moisture content, C:N ratio, and heavy metals analysis to support custom amendment rate and scarification depth. Total Quantity =CY Scarification depth:inches	Product:
Stockpile and amend	Attach information on bulk density, percent organic matter, moisture content, C:N ratio, and heavy metals analysis to support custom amendment rate and scarification depth. Total Quantity =CY Scarification depth:inches	Product:
Mulch		
Amend with compost	Planting beds: SF x 12.4 CY ÷ 1,000 SF= CY Total Quantity = CY	Product:
Stockpile and amend	Planting beds: SF x 12.4 CY ÷ 1,000 SF= CY Total Quantity = CY	Product:
Topsoil import	Planting beds: SF x 12.4 CY ÷ 1,000 SF= CY	Draduct

Project Engineer's Certification for Section B

For Stormwater Site Plans with engineered elements, the Construction SWPPP is stamped by a professional engineer licensed in the State of Washington in civil engineering.

If required, attach a page with the project engineer's seal with the following statement:
Hwang Lee Residence
"I hereby state that this Construction Stormwater Pollution Prevention Plan for
has been prepared by me or under my supervision and meets the standard of care and expertise which is usual and
customary in this community for professional engineers. I understand that the City of Mercer Island does not and will
not assume liability for the sufficiency, suitability, or performance of Construction SWPPP BMPs prepared by me."
Applicant Signature for Full Stormwater Package (Sections A through D)
I have read and completed the Stormwater Submittal Package and know the information provided to be true and correct.
Justin Goroch, P.E.
Print Applicant Name:
Applicant Signature: Date2/10/2022

2/10/2022

Why is Our Product ORGANIC?

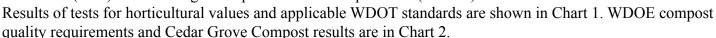
Cedar Grove makes a high quality, consistent compost through a patented process using controlled aeration, temperature monitoring, curing, and screening.

Compost supplies a natural feeding system with microbes, increasing activity in the soil.

Our product is 100% soil!

Cedar Grove compost is made from locally recycled garden prunings, food products and vegetable trimmings from residential curbside and commercial collection programs across the Puget Sound region. At our facilities, we double-screen the material to remove any non-compostable items.

2


We use a state-of-the-art computer controlled system to ensure that the compost is heated to 150 - 170 degrees to remove pathogens, pesticides and weed seeds. The naturally occurring microbes and heat break down toxic chemicals into safe compounds.

3

Our finished compost is sent to certified third party laboratories to guarantee that our product meets all standards. Cedar Grove, in compliance with the US Composting Council Seal of Testing, tests our compost prior to sale to ensure compliance with regulations.

Cedar Grove Compost Quality Assurance Program

Cedar Grove Compost facilities are in compliance with Washington Department of Ecology (WDOE) requirements for compost process and product quality (WAC 173-350-220). Cedar Grove also voluntarily meets the US Composting Council's Seal of Testing Assurance (STA) and Washington Department of Transportation (WDOT) standards.

Chart 1. Cedar Grove Fine Grade Compost Horticultural Values

		WDOT Standard	Cedar Grove
Organic Matter		>40%	53.1%
Carbon to Nitrogen Ratio			18
Conductivity		<4 mmhos/cm	3.1 mmhos/cm
Seedling Emergence		>80% of purified water	100%
Seedling Vigor		>80% of purified water	88%
Weed Seeds			No weed germination
Compost Stability		<7 mg CO ₂ /gr. OM/day	3.2 "Stable"
Dry weight			21 lbs / cu. ft.
Major Nutrients	Total Nitrogen		1.6%
	Phosphorous (P ₂ O ₅)		.55%
	Potassium (K ₂ O)		.89%
	Sulfate		40 mg/kg
	Calcium		1.6%
	Magnesium		0.34%

Chart 2. Compost Quality Requirements - Washington Administrative Code 173-350 Sect. 220

	WAC 173-350-220 Standard	Cedar Grove
Metals	Parts per million ((mg/kg), dry wt.
Arsenic	<=20	7.8
Cadmium	<=10	<1.0
Copper	<=750	42
Lead	<=150	29
Mercury	<=8	<1.0
Molybdenum	<=9	2.3
Nickel	<=210	18
Selenium	<=18	<1
Zinc	<=1400	160
pН	5-10 (range)	8.06
Salmonella (Pathogen indicator)	< 3 MPN / 4 grams of total solids	Pass
Sharps	0 percent	None Detected
Manufactured Inerts	< 0.5 percent	< 0.5 percent

Chart 3. WDOT Particle Size Specifications by Compost Grade

Sieve size	WDOT "Fine" Compost	Cedar Grove
1"	95-100%	100%
5/8"	90-100%	97.7%
1/4"	75-100%	93%

2106 Pacific Avenue, Suite 300 Tacoma, WA 98402

DETENTION SYSTEM WWHM ANALYSIS

PROJECT:

Hwang Lee Residence 9772 SE 41st Street Mercer Island, WA 98040

DATE: February 10, 2022

PRPARED FOR:

NW Lifestyle Homes 11747 NE 1st Street Suite 210 Bellevue, WA 98005

PREPARED BY: Kayla Schunzel, EIT **REVIEWED BY:** Justin Goroch, PE

The new Hugang Lee Decidence on Mercer Island, WA will include 2,421 square feet of new plus replaced hard

The new Hwang Lee Residence on Mercer Island, WA will include 3,431 square feet of new plus replaced hard surfaces, consisting of a single-family home and driveway. The project is eligible to use the Mercer Island Standard On-site Detention System Worksheet to meet Minimum Requirement #5: Low Impact Development standards. Initial design iterations using the Standard On-site Detention System Worksheet have proven the project site does not have sufficient elevation drop between finished floor elevation of the new home and the municipal storm system to utilize the recommended detention tanks. A 495 CF storage StormTech SC-160LP detention chamber system will be used to meet the Minimum Requirement 5 standard while fitting within the elevation constraint.

The designed SC-160LP chamber system contains approximately 11 cubic feet more than equivalent volume to a detention pipe sized via Table 1 in the Standard On-Site Detention System Worksheet. See Figure 1 below for the detention pipe chosen for comparison. The detention pipe chosen from Figure 1 has a cross sectional storage area of 18.61 square feet after subtracting six inches of dead storage and is 26 feet long. The pipe can store 483.94 cubic feet of runoff on top of 26.57 cubic feet of dead storage.

Figure 1. Mercer Island Standard On-site Detention System Worksheet Table 1

Table 1

ON-SITE DETENTION DESIGN FOR PROJECTS BETWEEN 500 SF AND 9,500 SF NEW PLUS REPLACED IMPERVIOUS SURFACE AREA

New and Replaced		Detenti Lengt	on Pipe th (ft)	Lowest Diamet	Orifice er (in) ⁽³⁾		Outlet Invert Orifice (ft)		Orifice ter (in)
Impervious Surface Area (sf)	Detention Pipe Diameter (in)	B soils	C soils	B soils	C soils	B soils	C soils	B soils	C soils
	36"	30	22	0.5	0.5	2.2	2.0	0.5	8.0
500 to 1,000 sf	48"	18	11	0.5	0.5	3.3	3.2	0.9	0.8
	60"	11	7	0.5	0.5	4.2	3.4	0.5	0.6
	36"	66	43	0.5	0.5	2.2	2.3	0.9	1.4
1,001 to 2,000 sf	48"	34	23	0.5	0.5	3.2	3.3	0.9	1.2
	60"	22	14	0.5	0.5	4.3	3.6	0.9	0.9
	36"	90	66	0.5	0.5	2.2	2.4	0.9	1.9
2,001 to 3,000 sf	48"	48	36	0.5	0.5	3.1	2.8	0.9	1.5
	60"	30	20	0.5	0.5	4.2	3.7	0.9	1.1
	36"	120	78	0.5	0.5	2.4	2.2	1.4	1.6
3,001 to 4,000 sf	48"	62	42	0.5	0.5	2.8	2.9	0.8	1.3
	60"	42	26	0.5	0.5	3.8	3.9	0.9	1.3

The prescribed detention pipe and StormTech system were compared via WWHM LID duration exceeding occasions. Both model predeveloped scenarios contained 0.078765 acres of flat forested land. The prescribed pipe mitigated condition contained 0.078765 acres of hard surface and the detention pipe as shown in Figure 2. The StormTech predeveloped condition contained the 0.078765 acres of hard surface and the StormTech system SSD table as shown in Figure 3 and the attached ADS StormTech SSD table.

The StormTech facility was sized to match volume and durations of the prescribed detention pipe, which failed the WWHM LID duration analysis. The StormTech Mitigated Occasions Exceeding LID column data from the LID Duration Analysis tab was compared to the prescribed detention pipe Mitigated Occasions Exceeding LID data. The StormTech system failed WWHM LID duration standards less than the prescribed pipe as shown in Table 1. Therefore, the StormTech system meets the Mercer Island standard for Low Impact Development determined from the Standard On-site Detention System Worksheet. Figures 4 and 5 show the LID Duration Analysis results. See attached WWHM reports and StormTech SSD table for reference.

Figure 2. WWHM Predeveloped Basin

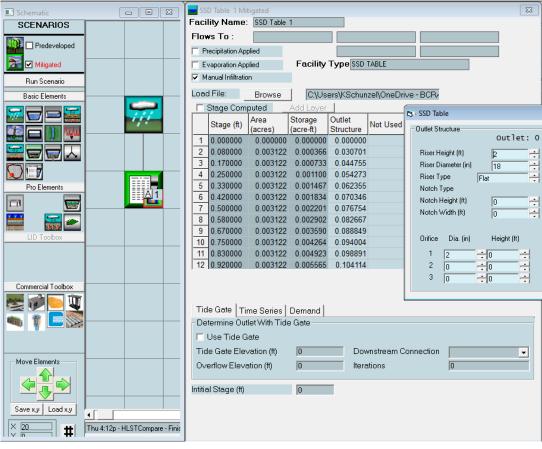
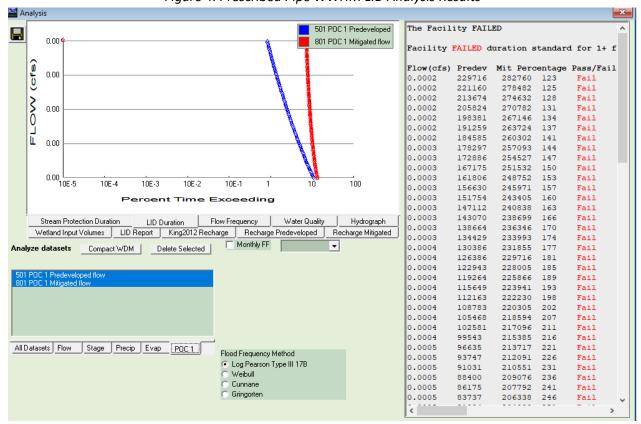



Figure 3. StormTech WWHM Mitigated Basin

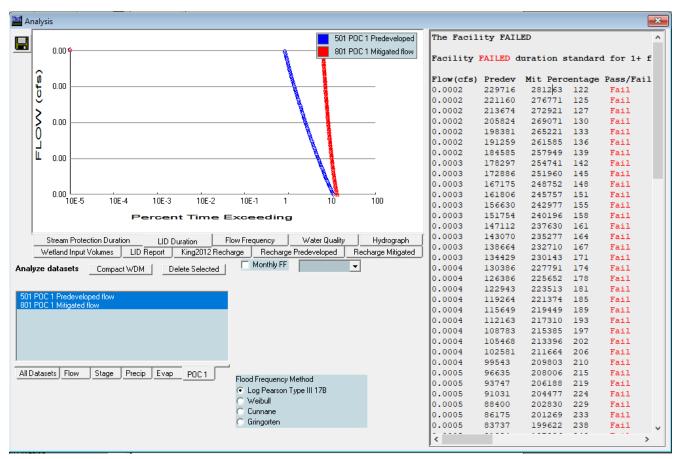


Figure 5. StormTech WWHM LID Analysis Results

Table 1. LID Analysis Comparison

Prescribed Mitigated Exceeding LID Occasions	Stormtech Mitigated Exceeding LID Occasions	Stormtech < Prescribed?
282760	281263	TRUE
278482	276771	TRUE
274632	272921	TRUE
270782	269071	TRUE
267146	265221	TRUE
263724	261585	TRUE
260302	257949	TRUE
257093	254741	TRUE
254527	251960	TRUE
251532	248752	TRUE
248752	245757	TRUE
245971	242977	TRUE
243405	240196	TRUE
240838	237630	TRUE
238699	235277	TRUE
236346	232710	TRUE
233993	230143	TRUE
231855	227791	TRUE
229716	225652	TRUE
228005	223513	TRUE
225866	221374	TRUE
223941	219449	TRUE
222230	217310	TRUE
220305	215385	TRUE
218594	213396	TRUE
217096	211664	TRUE
215385	209803	TRUE
213717	208006	TRUE
212091	206188	TRUE
210551	204477	TRUE
209076	202830	TRUE
207792	201269	TRUE
206338	199622	TRUE
204883	197996	TRUE
203450	196413	TRUE
202124	194895	TRUE
200969	193547	TRUE

198445	190574	TRUE
197226	189141	TRUE
196028	187708	TRUE
194831	186339	TRUE
193804	185120	TRUE
192649	183794	TRUE
191579	182489	TRUE
190531	181227	TRUE
189462	179965	TRUE
188435	178682	TRUE
187580	177570	TRUE
186575	176351	TRUE
185569	175174	TRUE
184607	173998	TRUE
183687	172779	TRUE
182789	171645	TRUE
181976	170597	TRUE
181099	169506	TRUE
180179	168480	TRUE
179345	167367	TRUE
178511	166341	TRUE
177805	165357	TRUE
176992	164330	TRUE
176180	163282	TRUE
175388	162277	TRUE
174597	161250	TRUE
173827	160288	TRUE
173142	159368	TRUE
172437	158427	TRUE
171731	157464	TRUE
171046	156523	TRUE
170383	155625	TRUE
169677	154748	TRUE
169078	153935	TRUE
168415	153080	TRUE
167774	152203	TRUE
167153	151304	TRUE
166512	150492	TRUE
165892	149636	TRUE
165335	148845	TRUE
164758	148032	TRUE
164159	147240	TRUE
163560	146492	TRUE
162940	145615	TRUE

162427	144866	TRUE
161828	144096	TRUE
161293	143262	TRUE
160737	142449	TRUE
160224	141701	TRUE
159646	140931	TRUE
159175	140289	TRUE
158662	139498	TRUE
158149	138771	TRUE
157635	138043	TRUE
157122	137359	TRUE
156609	136610	TRUE
156160	135969	TRUE
155646	135241	TRUE
155112	134536	TRUE
154620	133851	TRUE
154128	133188	TRUE
153657	132546	TRUE

Project:

Hwang Lee Residence

Chamber Model -Units -

SC-160 Imperial Click Here for Metric

Number of chambers -Voids in the stone (porosity) -Base of Stone Elevation -Amount of Stone Above Chambers -Amount of Stone Below Chambers -

25 35 % 0.00 ft in 6 in

✓ Include Perimeter Stone in Calculations

Area of system -

548 sf Min. Area - 371 sf min. area

Height of	Incremental Single	Incremental	Incremental	Incremental Ch	Cumulative		
System	Chamber	Total Chamber	Stone	& St	Chamber	Elevation	
(inches)	(cubic feet)	(cubic feet)	(cubic feet)	(cubic feet)	(cubic feet)	(feet)	
25	0.00	0.00	15.98	15.98	510.95	2.08	
24	0.00	0.00	15.98	15.98	494.97	2.00	Top of Fac
23	0.00	0.00	15.98	15.98	478.99	1.92	
22	0.00	0.00	15.98	15.98	463.00	1.83	
21	0.00	0.00	15.98	15.98	447.02	1.75	
20	0.00	0.00	15.98	15.98	431.04	1.67	
19	0.00	0.00	15.98	15.98	415.05	1.58	
18	0.05	1.28	15.54	16.82	399.07	1.50	
17	0.13	3.36	14.81	18.17	382.26	1.42	
16	0.29	7.26	13.44	20.71	364.09	1.33	
15	0.44	11.05	12.12	23.16	343.38	1.25	
14	0.54	13.48	11.27	24.74	320.22	1.17	
13	0.62	15.41	10.59	26.00	295.47	1.08	
12	0.68	17.02	10.03	27.05	269.47	1.00	
11	0.74	18.40	9.54	27.94	242.43	0.92	
10	0.78	19.59	9.13	28.71	214.49	0.83	
9	0.82	20.62	8.77	29.39	185.77	0.75	
8	0.86	21.51	8.46	29.96	156.39	0.67	
7	0.89	22.37	8.16	30.52	126.42	0.58	
6	0.00	0.00	15.98	15.98	95.90	0.50	
5	0.00	0.00	15.98	15.98	79.92	0.42	
4	0.00	0.00	15.98	15.98	63.93	0.33	
3	0.00	0.00	15.98	15.98	47.95	0.25	
2	0.00	0.00	15.98	15.98	31.97	0.17	
1	0.00	0.00	15.98	15.98	15.98	0.08	

Riser

WWHM2012 PROJECT REPORT

General Model Information

Project Name: Presribed

Site Name: HL3

Site Address:

City: Mercer Island
Report Date: 2/10/2022
Gage: Seatac

 Data Start:
 1948/10/01

 Data End:
 2009/09/30

 Timestep:
 15 Minute

 Precip Scale:
 1.000

Version Date: 2021/08/18

Version: 4.2.18

POC Thresholds

Low Flow Threshold for POC1: 50 Percent of the 2 Year

High Flow Threshold for POC1: 50 Year

Presribed 2/10/2022 4:50:54 PM Page 2

Landuse Basin Data Predeveloped Land Use

Basin 1

Bypass: No

GroundWater: No

Pervious Land Use acre C, Forest, Flat 0.078765

Pervious Total 0.078765

Impervious Land Use acre

Impervious Total 0

Basin Total 0.078765

Element Flows To:

Surface Interflow Groundwater

Presribed 2/10/2022 4:50:54 PM Page 3

Mitigated Land Use

Basin 1

Bypass: No

GroundWater: No

Pervious Land Use acre

Pervious Total 0

Impervious Land Use ROADS FLAT acre

0.078765

Impervious Total 0.078765

Basin Total 0.078765

Element Flows To:

Surface Interflow Groundwater

Tank 1 Tank 1

Presribed 2/10/2022 4:50:54 PM Page 4

Routing Elements Predeveloped Routing

Mitigated Routing

Tank 1

Dimensions

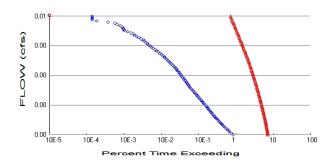
Depth: 5 ft. Tank Type: Diameter: Circular 5 ft. Length: 26 ft.

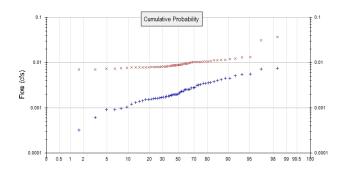
Discharge Structure Riser Height: Riser Diameter: 4.5 ft. 18 in.

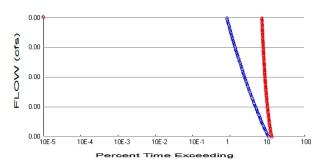
Orifice 1 Diameter: 0.5 in. Elevation:0 ft. Orifice 2 Diameter: 1.3 in. Elevation: 3.9 ft.

Element Flows To:

Outlet 1 Outlet 2


Tank Hydraulic Table


Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.000000	0.00000ò	0.000	0.000
0.0556	0.000626	0.000023	0.001	0.000
0.1111	0.000880	0.000065	0.002	0.000
0.1667	0.001071	0.000120	0.002	0.000
0.2222	0.001230	0.000184	0.003	0.000
0.2778	0.001367	0.000256	0.003	0.000
0.3333	0.001489	0.000336	0.003	0.000
0.3889	0.001599	0.000421	0.004	0.000
0.4444	0.001699	0.000513	0.004	0.000
0.5000	0.001791	0.000610	0.004	0.000
0.5556	0.001876	0.000712	0.005	0.000
0.6111	0.001955	0.000818	0.005	0.000
0.6667	0.002029	0.000929	0.005	0.000
0.7222	0.002098	0.001044	0.005	0.000
0.7778	0.002163	0.001162	0.006	0.000
0.8333	0.002224	0.001284	0.006	0.000
0.8889	0.002282	0.001409	0.006	0.000
0.9444	0.002336	0.001537	0.006	0.000
1.0000	0.002388	0.001669	0.006	0.000
1.0556	0.002436	0.001803	0.007	0.000
1.1111	0.002481	0.001939	0.007	0.000
1.1667	0.002525	0.002078	0.007	0.000
1.2222	0.002565	0.002220	0.007	0.000
1.2778	0.002603	0.002363	0.007	0.000
1.3333	0.002639	0.002509	0.007	0.000
1.3889	0.002673	0.002657	0.008	0.000
1.4444	0.002705	0.002806	0.008	0.000
1.5000	0.002735	0.002957	0.008	0.000
1.5556	0.002763	0.003110	0.008	0.000
1.6111	0.002789	0.003264	0.008	0.000
1.6667	0.002814	0.003420	0.008	0.000
1.7222	0.002836	0.003577	0.008	0.000
1.7778	0.002857	0.003735	0.009	0.000
1.8333	0.002876	0.003894	0.009	0.000
1.8889	0.002894	0.004054	0.009	0.000
1.9444	0.002910	0.004216	0.009	0.000
2.0000	0.002924	0.004378	0.009	0.000


Presribed 2/10/2022 4:50:54 PM Page 6

2.0556 0.002937 0.004540 0.009 0.000 2.1111 0.002948 0.004704 0.009 0.000 2.1667 0.002958 0.004868 0.010 0.000 2.2222 0.002966 0.005033 0.010 0.000 2.3333 0.002978 0.065363 0.010 0.000 2.3444 0.002984 0.055694 0.010 0.000 2.5500 0.02984 0.056694 0.010 0.000 2.5556 0.002984 0.066026 0.010 0.000 2.6667 0.002978 0.066357 0.011 0.000 2.6667 0.002984 0.066191 0.011 0.000 2.6667 0.02978 0.06637 0.011 0.000 2.7722 0.002978 0.06687 0.011 0.000 2.7778 0.002966 0.06687 0.011 0.000 2.8889 0.002948 0.06852 0.011 0.000 2.9444 0.002937 0.071	0.0550	0.000007	0.004540	0.000	0.000
2.1667 0.002958 0.004868 0.010 0.000 2.2222 0.002966 0.005033 0.010 0.000 2.2778 0.002978 0.005363 0.010 0.000 2.3889 0.002981 0.005528 0.010 0.000 2.4444 0.002984 0.005694 0.010 0.000 2.5556 0.002984 0.006026 0.010 0.000 2.5556 0.002981 0.00637 0.011 0.000 2.6667 0.002978 0.006357 0.011 0.000 2.6722 0.002978 0.006357 0.011 0.000 2.7727 0.002978 0.006852 0.011 0.000 2.7778 0.002966 0.006887 0.011 0.000 2.8333 0.002948 0.007652 0.011 0.000 2.83889 0.002948 0.007652 0.011 0.000 2.9444 0.002937 0.007719 0.011 0.000 3.0000 0.00294					
2.2222 0.002966 0.005033 0.010 0.000 2.3778 0.002973 0.005198 0.010 0.000 2.3333 0.002981 0.005528 0.010 0.000 2.4444 0.002984 0.005694 0.010 0.000 2.5000 0.002984 0.006026 0.010 0.000 2.5556 0.002981 0.006026 0.010 0.000 2.6667 0.002978 0.006357 0.011 0.000 2.7222 0.002973 0.006522 0.011 0.000 2.7778 0.002966 0.006687 0.011 0.000 2.8333 0.002958 0.006852 0.011 0.000 2.8444 0.002937 0.00716 0.011 0.000 2.9444 0.002937 0.007719 0.011 0.000 3.0556 0.002910 0.007342 0.011 0.000 3.0500 0.002876 0.007826 0.012 0.000 3.2222 0.002857					
2.2778 0.002973 0.005363 0.010 0.000 2.3333 0.002981 0.005528 0.010 0.000 2.4444 0.002984 0.005694 0.010 0.000 2.5000 0.002984 0.005606 0.010 0.000 2.5556 0.002984 0.006191 0.011 0.000 2.6667 0.002978 0.006357 0.011 0.000 2.6667 0.002978 0.006652 0.011 0.000 2.7722 0.002978 0.006687 0.011 0.000 2.7778 0.002966 0.006687 0.011 0.000 2.8333 0.002948 0.007106 0.011 0.000 2.9444 0.002937 0.007179 0.011 0.000 3.0000 0.002924 0.007342 0.011 0.000 3.0556 0.002910 0.007504 0.011 0.000 3.1667 0.002876 0.007826 0.012 0.000 3.2778 0.002867 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
2.3333 0.002978 0.005363 0.010 0.000 2.3889 0.002981 0.005528 0.010 0.000 2.4444 0.002984 0.005694 0.010 0.000 2.5556 0.002984 0.006026 0.010 0.000 2.66111 0.002978 0.006357 0.011 0.000 2.6667 0.002978 0.006357 0.011 0.000 2.7722 0.002973 0.006522 0.011 0.000 2.7778 0.002966 0.006687 0.011 0.000 2.8383 0.002958 0.006852 0.011 0.000 2.8389 0.002948 0.007016 0.011 0.000 2.9444 0.002934 0.007342 0.011 0.000 3.0566 0.002910 0.007564 0.011 0.000 3.1111 0.002876 0.007826 0.012 0.000 3.2222 0.002875 0.007826 0.012 0.000 3.2778 0.002876 <t< td=""><td>2.2222</td><td>0.002966</td><td>0.005033</td><td>0.010</td><td>0.000</td></t<>	2.2222	0.002966	0.005033	0.010	0.000
2.3333 0.002978 0.005363 0.010 0.000 2.3889 0.002981 0.005528 0.010 0.000 2.4444 0.002984 0.005694 0.010 0.000 2.5000 0.002984 0.006026 0.010 0.000 2.5556 0.002984 0.006191 0.011 0.000 2.66111 0.002978 0.006357 0.011 0.000 2.7222 0.002973 0.006522 0.011 0.000 2.7778 0.002968 0.006687 0.011 0.000 2.83833 0.002958 0.006852 0.011 0.000 2.8444 0.002937 0.007179 0.011 0.000 2.9444 0.002937 0.007342 0.011 0.000 3.0506 0.002910 0.007564 0.011 0.000 3.1111 0.002894 0.007665 0.012 0.000 3.2222 0.002876 0.007895 0.012 0.000 3.2778 0.002876 <	2.2778	0.002973	0.005198	0.010	0.000
2.3889 0.002984 0.005694 0.010 0.000 2.5000 0.002984 0.005680 0.010 0.000 2.5506 0.002984 0.006026 0.010 0.000 2.6111 0.002981 0.006191 0.011 0.000 2.6667 0.002978 0.006357 0.011 0.000 2.7722 0.002973 0.006852 0.011 0.000 2.8333 0.002966 0.006852 0.011 0.000 2.8889 0.002948 0.007016 0.011 0.000 2.9444 0.002937 0.007179 0.011 0.000 3.0000 0.002924 0.007342 0.011 0.000 3.0556 0.002910 0.007565 0.012 0.000 3.1111 0.002894 0.007665 0.012 0.000 3.2778 0.002876 0.0012 0.000 3.2778 0.002857 0.007826 0.012 0.000 3.5500 0.002763 0.008456 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
2.44444 0.002984 0.005860 0.010 0.000 2.5000 0.002984 0.005860 0.010 0.000 2.5556 0.002981 0.006026 0.010 0.000 2.6111 0.002978 0.006357 0.011 0.000 2.7222 0.002978 0.006522 0.011 0.000 2.7778 0.002966 0.006852 0.011 0.000 2.8383 0.002948 0.007016 0.011 0.000 2.9444 0.002937 0.007179 0.011 0.000 2.9444 0.002948 0.007342 0.011 0.000 3.0556 0.002910 0.007564 0.011 0.000 3.1111 0.002876 0.007826 0.012 0.000 3.2222 0.002876 0.007826 0.012 0.000 3.2778 0.002836 0.008143 0.012 0.000 3.2424 0.004 0.012 0.000 3.2556 0.00275 0.008610 0.					
2.5000 0.002984 0.006026 0.010 0.000 2.5556 0.002984 0.006026 0.010 0.000 2.6111 0.002978 0.006357 0.011 0.000 2.7222 0.002973 0.006522 0.011 0.000 2.7778 0.002966 0.006687 0.011 0.000 2.8333 0.002948 0.007016 0.011 0.000 2.8444 0.002937 0.007179 0.011 0.000 3.0000 0.002924 0.007342 0.011 0.000 3.0556 0.002910 0.07504 0.011 0.000 3.1111 0.0028876 0.007826 0.012 0.000 3.2222 0.002876 0.007826 0.012 0.000 3.2333 0.002816 0.008143 0.012 0.000 3.1667 0.002876 0.007826 0.012 0.000 3.22778 0.002836 0.008143 0.012 0.000 3.3333 0.002814 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
2.5556 0.002984 0.006191 0.011 0.000 2.6111 0.002978 0.006357 0.011 0.000 2.7222 0.002973 0.006522 0.011 0.000 2.7778 0.002966 0.006852 0.011 0.000 2.8333 0.002958 0.006852 0.011 0.000 2.8889 0.002948 0.007016 0.011 0.000 2.9444 0.002937 0.007179 0.011 0.000 3.0000 0.002924 0.007342 0.011 0.000 3.0556 0.002910 0.007504 0.011 0.000 3.1667 0.002876 0.007826 0.012 0.000 3.1667 0.002876 0.007826 0.012 0.000 3.2778 0.002836 0.008143 0.012 0.000 3.3333 0.002814 0.008300 0.012 0.000 3.4444 0.002763 0.008456 0.012 0.000 3.5556 0.002735 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
2.6111 0.002981 0.006191 0.011 0.000 2.6667 0.002978 0.006522 0.011 0.000 2.7778 0.002966 0.006852 0.011 0.000 2.8333 0.002948 0.007016 0.011 0.000 2.8889 0.002948 0.007016 0.011 0.000 2.9444 0.002937 0.007179 0.011 0.000 3.0000 0.002924 0.007342 0.011 0.000 3.0556 0.002910 0.007504 0.011 0.000 3.1111 0.002876 0.007826 0.012 0.000 3.2778 0.002836 0.008143 0.012 0.000 3.2778 0.002836 0.008143 0.012 0.000 3.3333 0.002814 0.008300 0.012 0.000 3.3889 0.002789 0.008456 0.012 0.000 3.5500 0.002735 0.008763 0.012 0.000 3.6667 0.002639 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
2.6667 0.002978 0.006357 0.011 0.000 2.7222 0.002973 0.006622 0.011 0.000 2.8333 0.002958 0.006852 0.011 0.000 2.88889 0.002948 0.007016 0.011 0.000 3.0000 0.002937 0.007179 0.011 0.000 3.0000 0.002924 0.007342 0.011 0.000 3.0556 0.002910 0.007504 0.011 0.000 3.1111 0.002876 0.007826 0.012 0.000 3.2222 0.002857 0.007826 0.012 0.000 3.2778 0.002836 0.008143 0.012 0.000 3.2778 0.002836 0.008143 0.012 0.000 3.3333 0.002814 0.008300 0.012 0.000 3.5000 0.002763 0.008610 0.012 0.000 3.5000 0.002735 0.008763 0.012 0.000 3.6667 0.002639 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
2.7222 0.002966 0.006827 0.011 0.000 2.7778 0.002966 0.006887 0.011 0.000 2.8333 0.002948 0.007016 0.011 0.000 2.8444 0.002937 0.007179 0.011 0.000 3.0000 0.002924 0.007342 0.011 0.000 3.0556 0.002910 0.007504 0.011 0.000 3.1111 0.002894 0.007665 0.012 0.000 3.1667 0.002876 0.007826 0.012 0.000 3.2222 0.002857 0.007985 0.012 0.000 3.2778 0.002836 0.08143 0.012 0.000 3.3833 0.002814 0.008300 0.012 0.000 3.8444 0.002789 0.008456 0.012 0.000 3.5500 0.002763 0.008610 0.012 0.000 3.6111 0.002639 0.009314 0.012 0.000 3.6222 0.002603					
2.7778 0.002966 0.006852 0.011 0.000 2.8333 0.002948 0.007016 0.011 0.000 2.8889 0.002948 0.007016 0.011 0.000 2.9444 0.002937 0.007179 0.011 0.000 3.0556 0.002924 0.007504 0.011 0.000 3.1111 0.002876 0.007665 0.012 0.000 3.11667 0.002876 0.007826 0.012 0.000 3.2222 0.002857 0.007826 0.012 0.000 3.2778 0.002836 0.008143 0.012 0.000 3.3333 0.002814 0.008300 0.012 0.000 3.4444 0.002763 0.008610 0.012 0.000 3.5000 0.002735 0.008763 0.012 0.000 3.5500 0.002735 0.008914 0.012 0.000 3.6667 0.002639 0.009211 0.013 0.000 3.6667 0.002639 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
2.8333 0.002958 0.006852 0.011 0.000 2.84889 0.002948 0.007016 0.011 0.000 3.0000 0.002924 0.007342 0.011 0.000 3.0000 0.002910 0.007504 0.011 0.000 3.1111 0.002894 0.007665 0.012 0.000 3.1667 0.002876 0.007826 0.012 0.000 3.2222 0.002857 0.007985 0.012 0.000 3.2778 0.002836 0.008143 0.012 0.000 3.3333 0.002814 0.008300 0.012 0.000 3.3444 0.002789 0.008456 0.012 0.000 3.5556 0.002763 0.008610 0.012 0.000 3.5556 0.002765 0.008763 0.012 0.000 3.6111 0.002633 0.009211 0.012 0.000 3.6222 0.002603 0.009211 0.013 0.000 3.7222 0.002663 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
2.8889 0.002948 0.007016 0.011 0.000 2.94444 0.002924 0.007179 0.011 0.000 3.0000 0.002924 0.007342 0.011 0.000 3.0556 0.002910 0.007504 0.011 0.000 3.1111 0.002894 0.007665 0.012 0.000 3.1111 0.002876 0.007826 0.012 0.000 3.2222 0.002836 0.008143 0.012 0.000 3.2778 0.002836 0.008143 0.012 0.000 3.3889 0.002789 0.008456 0.012 0.000 3.5000 0.002735 0.008610 0.012 0.000 3.5000 0.002705 0.00814 0.012 0.000 3.6111 0.002673 0.00874 0.012 0.000 3.6667 0.002639 0.009211 0.013 0.000 3.7222 0.002603 0.009356 0.013 0.000 3.8333 0.002565	2.7778	0.002966	0.006687	0.011	0.000
2.9444 0.002937 0.007179 0.011 0.000 3.0000 0.002910 0.007504 0.011 0.000 3.0556 0.002910 0.007605 0.012 0.000 3.1111 0.002876 0.007826 0.012 0.000 3.1667 0.002857 0.007985 0.012 0.000 3.2778 0.002836 0.008143 0.012 0.000 3.3333 0.002814 0.008300 0.012 0.000 3.3889 0.002763 0.008610 0.012 0.000 3.5000 0.002735 0.008763 0.012 0.000 3.5556 0.002705 0.008914 0.012 0.000 3.6111 0.002673 0.00863 0.012 0.000 3.6667 0.002639 0.009211 0.013 0.000 3.7778 0.002639 0.009211 0.013 0.000 3.7778 0.002565 0.009500 0.013 0.000 3.8333 0.002555	2.8333	0.002958	0.006852	0.011	0.000
2.9444 0.002937 0.007179 0.011 0.000 3.0000 0.002910 0.007504 0.011 0.000 3.0556 0.002910 0.007605 0.012 0.000 3.1111 0.002876 0.007826 0.012 0.000 3.1667 0.002857 0.007985 0.012 0.000 3.2778 0.002836 0.008143 0.012 0.000 3.3333 0.002814 0.008300 0.012 0.000 3.3889 0.002763 0.008610 0.012 0.000 3.5000 0.002735 0.008763 0.012 0.000 3.5556 0.002705 0.008914 0.012 0.000 3.6111 0.002673 0.00863 0.012 0.000 3.6667 0.002639 0.009211 0.013 0.000 3.7778 0.002639 0.009211 0.013 0.000 3.7778 0.002565 0.009500 0.013 0.000 3.8333 0.002555	2.8889	0.002948	0.007016	0.011	0.000
3.0000 0.002924 0.007342 0.011 0.000 3.0556 0.002910 0.007504 0.011 0.000 3.1111 0.002876 0.007826 0.012 0.000 3.1667 0.002876 0.007826 0.012 0.000 3.2222 0.002857 0.007985 0.012 0.000 3.2778 0.002836 0.008143 0.012 0.000 3.3333 0.002814 0.008300 0.012 0.000 3.3888 0.002789 0.008456 0.012 0.000 3.5000 0.002735 0.008763 0.012 0.000 3.6111 0.002673 0.008914 0.012 0.000 3.6667 0.002639 0.009911 0.013 0.000 3.7778 0.002639 0.009356 0.013 0.000 3.8333 0.002565 0.009500 0.013 0.000 3.7778 0.002603 0.00963 0.013 0.000 3.8333 0.002256					
3.0556 0.002910 0.007504 0.011 0.000 3.1111 0.002876 0.007826 0.012 0.000 3.1667 0.002876 0.007826 0.012 0.000 3.2222 0.002836 0.008143 0.012 0.000 3.3333 0.002814 0.008300 0.012 0.000 3.3889 0.002789 0.008456 0.012 0.000 3.5000 0.002763 0.008610 0.012 0.000 3.5000 0.002735 0.008763 0.012 0.000 3.5556 0.002705 0.008914 0.012 0.000 3.6667 0.002639 0.009211 0.013 0.000 3.7222 0.002603 0.009356 0.013 0.000 3.8889 0.002565 0.009500 0.013 0.000 3.7778 0.002565 0.009500 0.013 0.000 3.8889 0.002481 0.009780 0.013 0.000 4.0000 0.002388 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
3.1111 0.002894 0.007665 0.012 0.000 3.1667 0.002876 0.007826 0.012 0.000 3.2222 0.002857 0.007985 0.012 0.000 3.2778 0.002836 0.008143 0.012 0.000 3.3333 0.002814 0.008300 0.012 0.000 3.4444 0.002763 0.008610 0.012 0.000 3.5000 0.002735 0.008763 0.012 0.000 3.5556 0.002705 0.008914 0.012 0.000 3.6667 0.002639 0.009211 0.012 0.000 3.6667 0.002639 0.009211 0.013 0.000 3.7222 0.002603 0.009356 0.013 0.000 3.8333 0.002555 0.009641 0.013 0.000 3.8889 0.002481 0.00977 0.023 0.003 3.9444 0.002486 0.00977 0.023 0.000 4.0556 0.002386 0					
3.1667 0.002876 0.007826 0.012 0.000 3.2222 0.002836 0.008143 0.012 0.000 3.2778 0.002836 0.008143 0.012 0.000 3.3333 0.002814 0.008300 0.012 0.000 3.3889 0.002789 0.008610 0.012 0.000 3.5000 0.002735 0.008610 0.012 0.000 3.5556 0.002705 0.008914 0.012 0.000 3.6111 0.002633 0.009211 0.013 0.000 3.6667 0.002639 0.009211 0.013 0.000 3.77222 0.002603 0.009356 0.013 0.000 3.8333 0.002565 0.009641 0.013 0.000 3.8889 0.002481 0.009780 0.013 0.000 3.8889 0.002486 0.009917 0.023 0.000 4.0000 0.002388 0.01051 0.028 0.000 4.0556 0.00236					
3.2222 0.002836 0.008143 0.012 0.000 3.2333 0.002814 0.008300 0.012 0.000 3.3889 0.002789 0.008456 0.012 0.000 3.4444 0.002763 0.008610 0.012 0.000 3.5000 0.002735 0.008763 0.012 0.000 3.5556 0.002705 0.008914 0.012 0.000 3.6667 0.002639 0.009211 0.013 0.000 3.7222 0.002603 0.09356 0.013 0.000 3.7778 0.002565 0.009500 0.013 0.000 3.8333 0.002525 0.009641 0.013 0.000 3.8444 0.002481 0.009780 0.013 0.000 4.0000 0.002388 0.010051 0.028 0.000 4.0556 0.002386 0.010182 0.031 0.000 4.1111 0.002282 0.010182 0.031 0.000 4.1667 0.002284					
3.2778 0.002836 0.008143 0.012 0.000 3.3333 0.002814 0.008300 0.012 0.000 3.3889 0.002763 0.008610 0.012 0.000 3.5000 0.002735 0.008763 0.012 0.000 3.5556 0.002705 0.008914 0.012 0.000 3.6611 0.002639 0.009211 0.013 0.000 3.6667 0.002603 0.009356 0.013 0.000 3.7222 0.002603 0.009356 0.013 0.000 3.8333 0.002525 0.009641 0.013 0.000 3.8889 0.002481 0.009780 0.013 0.000 4.0000 0.002386 0.0103 0.000 4.0556 0.002386 0.01051 0.028 4.0556 0.002386 0.01051 0.028 4.0556 0.002386 0.01051 0.028 4.0556 0.002386 0.01051 0.028 4.0576 0.002					
3.3333 0.002814 0.008300 0.012 0.000 3.3889 0.002789 0.008456 0.012 0.000 3.4444 0.002735 0.008763 0.012 0.000 3.5000 0.002705 0.008914 0.012 0.000 3.6111 0.002673 0.009063 0.012 0.000 3.6667 0.002639 0.009211 0.013 0.000 3.77222 0.002603 0.009506 0.013 0.000 3.8333 0.002525 0.009641 0.013 0.000 3.8889 0.002481 0.009780 0.013 0.000 4.0000 0.002388 0.010917 0.023 0.000 4.0556 0.002336 0.01031 0.000 4.0556 0.002336 0.01031 0.000 4.1111 0.002282 0.01031 0.000 4.1667 0.002224 0.01031 0.034 0.000 4.2222 0.002163 0.010558 0.040 0.000					
3.3889 0.002789 0.008456 0.012 0.000 3.4444 0.002763 0.008610 0.012 0.000 3.55000 0.002705 0.008763 0.012 0.000 3.5556 0.002705 0.008914 0.012 0.000 3.6111 0.002639 0.009063 0.012 0.000 3.6667 0.002603 0.009356 0.013 0.000 3.7778 0.002565 0.009500 0.013 0.000 3.8889 0.002481 0.009780 0.013 0.000 3.9444 0.002481 0.009917 0.023 0.000 4.0000 0.002388 0.010051 0.028 0.000 4.0556 0.002336 0.010182 0.031 0.000 4.1111 0.002282 0.010311 0.034 0.000 4.12222 0.002163 0.010558 0.040 0.000 4.2778 0.002224 0.010436 0.037 0.000 4.27278 0.002098					
3.4444 0.002763 0.008610 0.012 0.000 3.5000 0.002735 0.008763 0.012 0.000 3.5556 0.002705 0.008914 0.012 0.000 3.6111 0.002633 0.009211 0.013 0.000 3.6667 0.002603 0.009211 0.013 0.000 3.7778 0.002565 0.009500 0.013 0.000 3.8333 0.002525 0.009641 0.013 0.000 3.8889 0.002481 0.009780 0.013 0.000 4.0000 0.002388 0.01051 0.028 0.000 4.0556 0.002336 0.01081 0.000 4.000 4.1111 0.002282 0.01031 0.000 4.1667 0.002284 0.01031 0.000 4.2222 0.002163 0.01051 0.034 0.000 4.2778 0.002294 0.010436 0.037 0.000 4.3333 0.002098 0.010676 0.042 0					
3.5000 0.002735 0.008763 0.012 0.000 3.5556 0.002705 0.008914 0.012 0.000 3.6111 0.002673 0.009063 0.012 0.000 3.6667 0.002639 0.009211 0.013 0.000 3.7778 0.002565 0.009500 0.013 0.000 3.8333 0.002525 0.009641 0.013 0.000 3.8444 0.002481 0.009780 0.013 0.000 4.0000 0.002388 0.010051 0.028 0.000 4.0556 0.002336 0.010182 0.031 0.000 4.1111 0.002282 0.010311 0.034 0.000 4.1667 0.002224 0.010436 0.037 0.000 4.2222 0.002163 0.010558 0.040 0.000 4.2778 0.002098 0.010676 0.042 0.000 4.3333 0.002029 0.010791 0.044 0.000 4.5000 0.001791 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
3.5556 0.002705 0.008914 0.012 0.000 3.6111 0.002673 0.009063 0.012 0.000 3.6667 0.002639 0.009211 0.013 0.000 3.7722 0.002603 0.009500 0.013 0.000 3.8333 0.002525 0.009641 0.013 0.000 3.8489 0.002481 0.009780 0.013 0.000 4.0000 0.002386 0.013 0.000 4.0000 0.002386 0.0103 0.000 4.0556 0.002336 0.010182 0.031 0.000 4.1111 0.002282 0.010311 0.034 0.000 4.2222 0.002163 0.010558 0.040 0.000 4.2778 0.00298 0.010558 0.040 0.000 4.3333 0.002098 0.010676 0.042 0.000 4.3444 0.001955 0.010901 0.046 0.000 4.5000 0.001791 0.011008 0.048 0.					
3.6111 0.002673 0.009063 0.012 0.000 3.6667 0.002639 0.009211 0.013 0.000 3.7222 0.002603 0.009500 0.013 0.000 3.8333 0.002525 0.009641 0.013 0.000 3.8444 0.002436 0.009917 0.023 0.000 4.0000 0.002388 0.010051 0.028 0.000 4.0556 0.002336 0.010182 0.031 0.000 4.1111 0.002282 0.010311 0.034 0.000 4.1667 0.002224 0.010436 0.037 0.000 4.2222 0.002163 0.010558 0.040 0.000 4.2778 0.002098 0.010676 0.042 0.000 4.3389 0.001955 0.010901 0.046 0.000 4.4444 0.001876 0.011008 0.048 0.000 4.5000 0.001791 0.011100 0.048 0.000 4.5556 0.001699 0.011207 0.259 0.000 4.6667 0.001489 0.01					
3.6667 0.002639 0.009211 0.013 0.000 3.7222 0.002603 0.009356 0.013 0.000 3.7778 0.002565 0.009500 0.013 0.000 3.8333 0.002525 0.009641 0.013 0.000 3.8889 0.002481 0.009780 0.013 0.000 4.0000 0.002386 0.009917 0.023 0.000 4.0000 0.002388 0.010051 0.028 0.000 4.0556 0.002336 0.010182 0.031 0.000 4.1111 0.002282 0.010311 0.034 0.000 4.1667 0.002224 0.010436 0.037 0.000 4.2222 0.002163 0.010558 0.040 0.000 4.2778 0.002098 0.010676 0.042 0.000 4.3383 0.001955 0.010901 0.046 0.000 4.4444 0.001876 0.011008 0.048 0.000 4.5000 0.001791 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
3.7222 0.002603 0.009356 0.013 0.000 3.7778 0.002565 0.009500 0.013 0.000 3.8333 0.002525 0.009641 0.013 0.000 3.8889 0.002481 0.009780 0.013 0.000 3.9444 0.002436 0.009917 0.023 0.000 4.0000 0.002388 0.010051 0.028 0.000 4.0556 0.002336 0.010182 0.031 0.000 4.1111 0.002282 0.010311 0.034 0.000 4.1667 0.002224 0.010436 0.037 0.000 4.2222 0.002163 0.010558 0.040 0.000 4.2333 0.002098 0.010676 0.042 0.000 4.3389 0.001955 0.010901 0.046 0.000 4.5000 0.001791 0.011008 0.048 0.000 4.5556 0.001699 0.011207 0.259 0.000 4.6667 0.001489 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
3.7778 0.002565 0.009500 0.013 0.000 3.8333 0.002525 0.009641 0.013 0.000 3.8889 0.002481 0.009917 0.023 0.000 4.0000 0.002388 0.010051 0.028 0.000 4.0556 0.002336 0.010182 0.031 0.000 4.1111 0.002282 0.010311 0.034 0.000 4.1667 0.002224 0.010436 0.037 0.000 4.2222 0.002163 0.010558 0.040 0.000 4.2778 0.002098 0.010676 0.042 0.000 4.3333 0.002029 0.010791 0.044 0.000 4.3444 0.001876 0.010091 0.046 0.000 4.5000 0.001791 0.011008 0.048 0.000 4.5556 0.001699 0.011207 0.259 0.000 4.6667 0.001489 0.011207 0.259 0.000 4.7722 0.001367 <td< td=""><td>3.6667</td><td>0.002639</td><td>0.009211</td><td>0.013</td><td>0.000</td></td<>	3.6667	0.002639	0.009211	0.013	0.000
3.8333 0.002525 0.009641 0.013 0.000 3.8889 0.002481 0.009780 0.013 0.000 3.9444 0.002436 0.009917 0.023 0.000 4.0000 0.002388 0.010051 0.028 0.000 4.0556 0.002336 0.010182 0.031 0.000 4.1111 0.002282 0.010311 0.034 0.000 4.1667 0.002224 0.010436 0.037 0.000 4.2222 0.002163 0.010558 0.040 0.000 4.2778 0.002098 0.010676 0.042 0.000 4.3333 0.002029 0.010791 0.044 0.000 4.3889 0.001955 0.010901 0.046 0.000 4.4444 0.001876 0.011008 0.048 0.000 4.5500 0.001791 0.011100 0.049 0.000 4.6667 0.001489 0.011207 0.259 0.000 4.7722 0.001367 <td< td=""><td>3.7222</td><td>0.002603</td><td>0.009356</td><td>0.013</td><td>0.000</td></td<>	3.7222	0.002603	0.009356	0.013	0.000
3.8889 0.002481 0.009780 0.013 0.000 3.9444 0.002436 0.009917 0.023 0.000 4.0000 0.002388 0.010051 0.028 0.000 4.0556 0.002336 0.010182 0.031 0.000 4.1111 0.002282 0.010311 0.034 0.000 4.1667 0.002224 0.010436 0.037 0.000 4.2222 0.002163 0.010558 0.040 0.000 4.2778 0.002098 0.010676 0.042 0.000 4.3333 0.002029 0.010791 0.044 0.000 4.3889 0.001955 0.010901 0.046 0.000 4.4444 0.001876 0.011008 0.048 0.000 4.5000 0.001791 0.011100 0.049 0.000 4.5556 0.001699 0.011207 0.259 0.000 4.6667 0.001489 0.011298 0.641 0.000 4.7722 0.001367 0.011600 2.941 0.000 4.8889 0.000280 0.01	3.7778	0.002565	0.009500	0.013	0.000
3.8889 0.002481 0.009780 0.013 0.000 3.9444 0.002436 0.009917 0.023 0.000 4.0000 0.002388 0.010051 0.028 0.000 4.0556 0.002336 0.010182 0.031 0.000 4.1111 0.002282 0.010311 0.034 0.000 4.1667 0.002224 0.010436 0.037 0.000 4.2222 0.002163 0.010558 0.040 0.000 4.2778 0.002098 0.010676 0.042 0.000 4.3333 0.002029 0.010791 0.044 0.000 4.3889 0.001955 0.010901 0.046 0.000 4.4444 0.001876 0.011008 0.048 0.000 4.5000 0.001791 0.011100 0.049 0.000 4.5556 0.001699 0.011207 0.259 0.000 4.6667 0.001489 0.011298 0.641 0.000 4.7722 0.001367 0.011600 2.941 0.000 4.8889 0.000280 0.01	3.8333	0.002525	0.009641	0.013	0.000
3.9444 0.002436 0.009917 0.023 0.000 4.0000 0.002388 0.010051 0.028 0.000 4.0556 0.002336 0.010182 0.031 0.000 4.1111 0.002282 0.010311 0.034 0.000 4.1667 0.002224 0.010436 0.037 0.000 4.2222 0.002163 0.010558 0.040 0.000 4.2778 0.002098 0.010676 0.042 0.000 4.3333 0.002029 0.010791 0.044 0.000 4.3889 0.001955 0.010901 0.046 0.000 4.4444 0.001876 0.011008 0.048 0.000 4.5000 0.001791 0.011108 0.048 0.000 4.5556 0.001699 0.011207 0.259 0.000 4.6667 0.001489 0.011298 0.641 0.000 4.7722 0.001367 0.011600 2.941 0.000 4.8889 0.000230 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
4.0000 0.002388 0.010051 0.028 0.000 4.0556 0.002336 0.010182 0.031 0.000 4.1111 0.002224 0.010311 0.034 0.000 4.1667 0.002224 0.010436 0.037 0.000 4.2222 0.002163 0.010558 0.040 0.000 4.2778 0.002098 0.010676 0.042 0.000 4.3333 0.002029 0.010791 0.044 0.000 4.3889 0.001955 0.010901 0.046 0.000 4.4444 0.001876 0.011008 0.048 0.000 4.5000 0.001791 0.011108 0.048 0.000 4.5556 0.001699 0.011207 0.259 0.000 4.6667 0.001489 0.011298 0.641 0.000 4.7222 0.001367 0.011464 1.693 0.000 4.8333 0.001071 0.011600 2.941 0.000 4.8889 0.000880 0.011654 3.570 0.000 4.9444 0.000626 0.01					
4.05560.0023360.0101820.0310.0004.11110.0022820.0103110.0340.0004.16670.0022240.0104360.0370.0004.22220.0021630.0105580.0400.0004.27780.0020980.0106760.0420.0004.33330.0020290.0107910.0440.0004.38890.0019550.0109010.0460.0004.44440.0018760.0110080.0480.0004.50000.0017910.0111100.0490.0004.55560.0016990.0112070.2590.0004.61110.0015990.0112980.6410.0004.66670.0014890.0113841.1290.0004.72220.0013670.0114641.6930.0004.77780.0012300.0115362.3060.0004.83330.0010710.0116002.9410.0004.88890.0008800.0116543.5700.0004.94440.0006260.0116964.1650.0005.00000.0000000.0117204.7020.000					
4.1111 0.002282 0.010311 0.034 0.000 4.1667 0.002224 0.010436 0.037 0.000 4.2222 0.002163 0.010558 0.040 0.000 4.2778 0.002098 0.010676 0.042 0.000 4.3333 0.002029 0.010791 0.044 0.000 4.3889 0.001955 0.010901 0.046 0.000 4.4444 0.001876 0.011008 0.048 0.000 4.5000 0.001791 0.011100 0.049 0.000 4.5556 0.001699 0.011207 0.259 0.000 4.6667 0.001489 0.011298 0.641 0.000 4.7222 0.001367 0.011464 1.693 0.000 4.7778 0.001230 0.011536 2.306 0.000 4.8333 0.001071 0.011600 2.941 0.000 4.8889 0.000880 0.011654 3.570 0.000 4.9444 0.000626 0.011696 4.165 0.000 5.0000 0.000000 0.01					
4.1667 0.002224 0.010436 0.037 0.000 4.2222 0.002163 0.010558 0.040 0.000 4.2778 0.002098 0.010676 0.042 0.000 4.3333 0.002029 0.010791 0.044 0.000 4.3889 0.001955 0.010901 0.046 0.000 4.4444 0.001876 0.011008 0.048 0.000 4.5000 0.001791 0.011100 0.049 0.000 4.5556 0.001699 0.011207 0.259 0.000 4.6667 0.001489 0.011298 0.641 0.000 4.7222 0.001367 0.011384 1.129 0.000 4.7778 0.001230 0.011536 2.306 0.000 4.8333 0.001071 0.011600 2.941 0.000 4.8889 0.000880 0.011654 3.570 0.000 4.9444 0.000626 0.011696 4.165 0.000 5.0000 0.000000 0.0011720 4.702 0.000					
4.2222 0.002163 0.010558 0.040 0.000 4.2778 0.002098 0.010676 0.042 0.000 4.3333 0.002029 0.010791 0.044 0.000 4.3889 0.001955 0.010901 0.046 0.000 4.4444 0.001876 0.011008 0.048 0.000 4.5000 0.001791 0.011100 0.049 0.000 4.5556 0.001699 0.011207 0.259 0.000 4.6111 0.001599 0.011298 0.641 0.000 4.6667 0.001489 0.011384 1.129 0.000 4.7222 0.001367 0.011464 1.693 0.000 4.8333 0.001071 0.011600 2.941 0.000 4.8889 0.000880 0.011654 3.570 0.000 4.9444 0.000626 0.011696 4.165 0.000 5.0000 0.000000 0.011720 4.702 0.000					
4.2778 0.002098 0.010676 0.042 0.000 4.3333 0.002029 0.010791 0.044 0.000 4.3889 0.001955 0.010901 0.046 0.000 4.4444 0.001876 0.011008 0.048 0.000 4.5000 0.001791 0.01110 0.049 0.000 4.5556 0.001699 0.011207 0.259 0.000 4.6111 0.001599 0.011298 0.641 0.000 4.6667 0.001489 0.011384 1.129 0.000 4.7222 0.001367 0.011464 1.693 0.000 4.8333 0.001071 0.011600 2.941 0.000 4.8889 0.000880 0.011654 3.570 0.000 4.9444 0.000626 0.011696 4.165 0.000 5.0000 0.000000 0.0011720 4.702 0.000					
4.3333 0.002029 0.010791 0.044 0.000 4.3889 0.001955 0.010901 0.046 0.000 4.4444 0.001876 0.011008 0.048 0.000 4.5000 0.001791 0.011110 0.049 0.000 4.5556 0.001699 0.011207 0.259 0.000 4.6111 0.001599 0.011298 0.641 0.000 4.6667 0.001489 0.011384 1.129 0.000 4.7222 0.001367 0.011464 1.693 0.000 4.7778 0.001230 0.011536 2.306 0.000 4.8333 0.001071 0.011600 2.941 0.000 4.8889 0.000880 0.011654 3.570 0.000 4.9444 0.000626 0.011696 4.165 0.000 5.0000 0.000000 0.011720 4.702 0.000					
4.3889 0.001955 0.010901 0.046 0.000 4.4444 0.001876 0.011008 0.048 0.000 4.5000 0.001791 0.011110 0.049 0.000 4.5556 0.001699 0.011207 0.259 0.000 4.6111 0.001599 0.011298 0.641 0.000 4.6667 0.001489 0.011384 1.129 0.000 4.7222 0.001367 0.011464 1.693 0.000 4.7778 0.001230 0.011536 2.306 0.000 4.8333 0.001071 0.011600 2.941 0.000 4.8889 0.000880 0.011654 3.570 0.000 4.9444 0.000626 0.011696 4.165 0.000 5.0000 0.000000 0.011720 4.702 0.000					
4.4444 0.001876 0.011008 0.048 0.000 4.5000 0.001791 0.011110 0.049 0.000 4.5556 0.001699 0.011207 0.259 0.000 4.6111 0.001599 0.011298 0.641 0.000 4.6667 0.001489 0.011384 1.129 0.000 4.7222 0.001367 0.011464 1.693 0.000 4.7778 0.001230 0.011536 2.306 0.000 4.8333 0.001071 0.011600 2.941 0.000 4.8889 0.000880 0.011654 3.570 0.000 4.9444 0.000626 0.011696 4.165 0.000 5.0000 0.000000 0.011720 4.702 0.000					
4.5000 0.001791 0.011110 0.049 0.000 4.5556 0.001699 0.011207 0.259 0.000 4.6111 0.001599 0.011298 0.641 0.000 4.6667 0.001489 0.011384 1.129 0.000 4.7222 0.001367 0.011464 1.693 0.000 4.7778 0.001230 0.011536 2.306 0.000 4.8333 0.001071 0.011600 2.941 0.000 4.8889 0.000880 0.011654 3.570 0.000 4.9444 0.000626 0.011696 4.165 0.000 5.0000 0.000000 0.011720 4.702 0.000					
4.5556 0.001699 0.011207 0.259 0.000 4.6111 0.001599 0.011298 0.641 0.000 4.6667 0.001489 0.011384 1.129 0.000 4.7222 0.001367 0.011464 1.693 0.000 4.7778 0.001230 0.011536 2.306 0.000 4.8333 0.001071 0.011600 2.941 0.000 4.8889 0.000880 0.011654 3.570 0.000 4.9444 0.000626 0.011696 4.165 0.000 5.0000 0.000000 0.011720 4.702 0.000					
4.6111 0.001599 0.011298 0.641 0.000 4.6667 0.001489 0.011384 1.129 0.000 4.7222 0.001367 0.011464 1.693 0.000 4.7778 0.001230 0.011536 2.306 0.000 4.8333 0.001071 0.011600 2.941 0.000 4.8889 0.000880 0.011654 3.570 0.000 4.9444 0.000626 0.011696 4.165 0.000 5.0000 0.000000 0.011720 4.702 0.000					
4.6667 0.001489 0.011384 1.129 0.000 4.7222 0.001367 0.011464 1.693 0.000 4.7778 0.001230 0.011536 2.306 0.000 4.8333 0.001071 0.011600 2.941 0.000 4.8889 0.000880 0.011654 3.570 0.000 4.9444 0.000626 0.011696 4.165 0.000 5.0000 0.000000 0.011720 4.702 0.000					
4.7222 0.001367 0.011464 1.693 0.000 4.7778 0.001230 0.011536 2.306 0.000 4.8333 0.001071 0.011600 2.941 0.000 4.8889 0.000880 0.011654 3.570 0.000 4.9444 0.000626 0.011696 4.165 0.000 5.0000 0.000000 0.011720 4.702 0.000					
4.7778 0.001230 0.011536 2.306 0.000 4.8333 0.001071 0.011600 2.941 0.000 4.8889 0.000880 0.011654 3.570 0.000 4.9444 0.000626 0.011696 4.165 0.000 5.0000 0.000000 0.011720 4.702 0.000					
4.8333 0.001071 0.011600 2.941 0.000 4.8889 0.000880 0.011654 3.570 0.000 4.9444 0.000626 0.011696 4.165 0.000 5.0000 0.000000 0.011720 4.702 0.000					
4.8889 0.000880 0.011654 3.570 0.000 4.9444 0.000626 0.011696 4.165 0.000 5.0000 0.000000 0.011720 4.702 0.000					
4.9444 0.000626 0.011696 4.165 0.000 5.0000 0.000000 0.011720 4.702 0.000				2.941	
5.0000 0.000000 0.011720 4.702 0.000	4.8889				
5.0000 0.000000 0.011720 4.702 0.000	4.9444	0.000626	0.011696	4.165	0.000
	5.0000	0.000000	0.011720		0.000
	5.0556	0.000000	0.000000	5.161	0.000

Analysis Results POC 1

+ Predeveloped

x Mitigated

Predeveloped Landuse Totals for POC #1 Total Pervious Area: 0.078765

Total Impervious Area: 0

Mitigated Landuse Totals for POC #1

Total Pervious Area: 0

Total Impervious Area: 0.078765

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.002316

 5 year
 0.003637

 10 year
 0.004386

 25 year
 0.005179

 50 year
 0.00567

 100 year
 0.006087

Flow Frequency Return Periods for Mitigated. POC #1

Return PeriodFlow(cfs)2 year0.009095 year0.01179710 year0.01383125 year0.01668750 year0.019031100 year0.021569

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1 Predeveloped Mitigated Year 1949 0.002 0.0101950 0.003 0.009 1951 0.010 0.005 1952 0.002 0.008 1953 0.001 0.008 1954 0.002 0.008 1955 0.003 0.011 1956 0.003 0.009 1957 0.002 0.010 1958 0.002 0.009 1959 0.002 0.008 1960 0.003 0.010 1961 0.002 0.008 1962 0.001 0.007 1963 0.002 0.007 1964 0.002 0.008 1965 0.002 0.008 1966 0.002 0.008 1967 0.003 0.010 1968 0.002 0.008 1969 0.002 0.009 1970 0.002 0.009 1971 0.002 0.008 1972 0.004 0.010 1973 0.008 0.002 1974 0.002 0.007 1975 0.003 0.010 1976 0.002 0.008 1977 0.000 0.008 1978 0.002 0.010 1979 0.001 0.008 1980 0.004 0.009 1981 0.001 0.009 1982 0.012 0.003 1983 0.002 0.010 1984 0.002 0.008 1985 0.001 0.009 1986 0.004 0.011 0.004 1987 0.011 1988 0.001 0.008 1989 0.001 0.007 1990 0.007 0.013 1991 0.004 0.012 1992 0.002 0.009 1993 0.002 0.007 1994 0.001 0.007 1995 0.003 0.009 1996 0.005 0.011 1997 0.005 0.012 1998 0.001 0.008 1999 0.004 0.010 2000 0.002 0.009 2001 0.000 0.008 2002 0.002 0.011 2003 0.003 0.008

2004

Presribed 2/10/2022 4:52:23 PM Page 9

0.037

0.003

2005	0.002	0.010
2006	0.003	0.009
2007	0.006	0.013
2008	0.007	0.031
2009	0.003	0.010

Ranked Annual Peaks
Ranked Annual Peaks for Predeveloped and Mitigated. POC #1

		eveloped and Mitigated.	POC #
Rank 1	Predeveloped 0.0074	0.0367	
	0.0074	0.0311	
2 3	0.0055	0.0134	
4	0.0054	0.0131	
5	0.0051	0.0122	
6	0.0045	0.0120	
7	0.0045	0.0115	
8	0.0043	0.0114	
9	0.0040	0.0113	
10	0.0038	0.0112	
11	0.0036	0.0108	
12	0.0036	0.0106	
13	0.0035	0.0105	
14	0.0034	0.0104	
15 16	0.0032 0.0032	0.0104	
17	0.0032	0.0104 0.0103	
18	0.0028	0.0103	
19	0.0028	0.0103	
20	0.0027	0.0100	
21	0.0026	0.0099	
22	0.0025	0.0096	
23	0.0025	0.0096	
24	0.0025	0.0095	
25	0.0025	0.0095	
26	0.0023	0.0093	
27	0.0023	0.0090	
28	0.0023	0.0090	
29	0.0022	0.0089	
30	0.0020	0.0089	
31 32	0.0020	0.0089	
33	0.0020 0.0020	0.0087 0.0087	
34	0.0020	0.0086	
35	0.0020	0.0086	
36	0.0019	0.0085	
37	0.0019	0.0085	
38	0.0018	0.0083	
39	0.0018	0.0083	
40	0.0018	0.0082	
41	0.0017	0.0082	
42	0.0017	0.0082	
43	0.0017	0.0081	
44	0.0017	0.0080	
45	0.0016	0.0080	
46	0.0016	0.0080	
47	0.0016	0.0079	
48	0.0016	0.0079	
49	0.0015	0.0079	

50	0.0015	0.0078
51	0.0014	0.0078
52	0.0014	0.0078
53	0.0013	0.0077
54	0.0012	0.0077
55	0.0010	0.0077
56	0.0010	0.0075
57	0.0009	0.0074
58	0.0009	0.0073
59	0.0006	0.0071
60	0.0003	0.0070
61	0.0002	0.0069

LID Duration Flows

	Duadan	B.6:4	D	D/F-:I
Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0002 0.0002	229716 221160	282760 278482	123 125	Fail Fail
0.0002	213674	274632	128	Fail
0.0002	205824	270782	131	Fail
0.0002	198381	267146	134	Fail
0.0002	191259	263724	137	Fail
0.0002	184585	260302	141	Fail
0.0003	178297	257093	144	Fail
0.0003	172886	254527	147	Fail
0.0003	167175	251532	150	Fail
0.0003	161806	248752	153	Fail
0.0003	156630	245971	157	Fail
0.0003	151754	243405	160	Fail
0.0003	147112	240838	163	Fail
0.0003	143070	238699	166	Fail
0.0003	138664	236346	170	Fail
0.0003	134429	233993	174	Fail
0.0004	130386	231855	177	Fail
0.0004	126386	229716	181	Fail
0.0004	122943	228005	185	Fail
0.0004	119264	225866	189	Fail
0.0004	115649	223941	193	<u>Fail</u>
0.0004	112163	222230	198	Fail
0.0004	108783	220305	202	Fail
0.0004	105468	218594	207	Fail
0.0004	102581	217096	211	Fail
0.0004	99543	215385	216	Fail
0.0005 0.0005	96635	213717 212091	221 226	Fail
0.0005	93747 91031	210551	231	Fail Fail
0.0005	88400	209076	236	Fail
0.0005	86175	207792	241	Fail
0.0005	83737	206338	246	Fail
0.0005	81384	204883	251	Fail
0.0005	79053	203450	257	Fail
0.0005	76850	202124	263	Fail
0.0005	74946	200969	268	Fail
0.0005	72829	199707	274	Fail
0.0006	70904	198445	279	Fail
0.0006	69043	197226	285	Fail
0.0006	67118	196028	292	Fail
0.0006	65321	194831	298	Fail
0.0006	63781	193804	303	Fail
0.0006	62113	192649	310	Fail
0.0006	60552	191579	316	Fail
0.0006	59054	190531	322	<u>F</u> ail
0.0006	57579	189462	329	Fail
0.0006	56103	188435	335	Fail
0.0007	54819 52454	187580	342	Fail
0.0007	53451 53435	186575	349	Fail
0.0007 0.0007	52125 50841	185569 184607	356 363	Fail
0.0007	49579	184607 183687	370	Fail Fail
0.0007	48339	182789	378	Fail

0.0007 0.0007 0.0007 0.0007 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0011 0.0011 0.0011 0.0011	47312 46157 44981 43933 42906 42008 41024 40061 39077 38179 37238 36468 35591 34778 33944 33153 32383 31720 30992 30265 29538 28896 28233 27613 26993 26415 25260 24747 24234 23720 23228 22779 22309 21902 21474 21036 20627 20223 19787 19408 19017 18615 18245	181976 181099 180179 179345 178511 177805 176992 176180 175388 174597 173142 172437 173142 172437 171731 171046 170383 169677 169078 168415 167774 167153 166512 165335 164758 164758 164758 164758 164758 164159 163560 162940 162427 161828 161293 160737 160224 159646 159175 158662 158149 157635 157122 156609 156160 155112	384 392 400 408 416 423 431 438 457 466 474 483 503 513 523 535 545 565 679 679 715 764 779 779 779 779 779 779 779 779 779 77	
				Fail Fail Fail Fail

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Presribed 2/10/2022 4:52:23 PM Page 13

Duration Flows

Flow(cfs)	Flour(efe)	Duaday	N#:4	Davaantawa	Daga/Fail
0.0012 16170 151647 937 Fail 0.0012 14964 149657 1000 Fail 0.0013 13860 147690 1065 Fail 0.0013 12814 145743 1137 Fail 0.0014 11819 143861 1217 Fail 0.0014 10902 141915 1301 Fail 0.0015 10117 140075 1384 Fail 0.0016 8729 136525 1564 Fail 0.0016 8156 134728 1651 Fail 0.0017 7593 132718 1747 Fail 0.0017 7593 132718 1747 Fail 0.0018 6590 128333 1947 Fail 0.0018 6590 128333 1947 Fail 0.0018 5781 123756 2140 Fail 0.0018 5781 123756 2140 Fail 0.0020 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
0.0012 14964 149657 1000 Fail 0.0013 13860 147690 1065 Fail 0.0013 12814 145743 1137 Fail 0.0014 11819 143861 1217 Fail 0.0015 10117 140075 1384 Fail 0.0015 9390 138321 1473 Fail 0.0016 8729 136525 1564 Fail 0.0016 8729 136525 1564 Fail 0.0017 7593 132718 1747 Fail 0.0017 7593 132718 1747 Fail 0.0018 6590 128333 1947 Fail 0.0018 6591 128333 1947 Fail 0.0018 6781 123756 2140 Fail 0.0018 5781 123756 2140 Fail 0.0019 5431 121510 2237 Fail 0.0020 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
0.0013 13860 147690 1065 Fail 0.0013 12814 145743 1137 Fail 0.0014 11819 143861 1217 Fail 0.0014 10902 141915 1301 Fail 0.0015 10117 140075 1384 Fail 0.0016 8729 136525 1564 Fail 0.0016 8156 134728 1651 Fail 0.0017 7593 132718 1747 Fail 0.0017 7593 132718 1747 Fail 0.0018 6590 128333 1947 Fail 0.0018 6590 128333 1947 Fail 0.0018 5781 123756 2140 Fail 0.0018 5781 123756 2340 Fail 0.0019 5431 121510 2237 Fail 0.0020 4808 117510 2444 Fail 0.0021 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
0.0013 12814 145743 1137 Fail 0.0014 11819 143861 1217 Fail 0.0014 10902 141915 1301 Fail 0.0015 10117 140075 1384 Fail 0.0016 8729 136525 1564 Fail 0.0016 8156 134728 1651 Fail 0.0017 7593 132718 1747 Fail 0.0017 7071 130643 1847 Fail 0.0018 6590 128333 1947 Fail 0.0018 6659 128333 1947 Fail 0.0018 5781 125800 2050 Fail 0.0018 5781 125786 2140 Fail 0.0019 5431 121510 2237 Fail 0.0019 5103 119456 2340 Fail 0.0020 4808 117510 2444 Fail 0.0021					
0.0014 11819 143861 1217 Fail 0.0014 10902 141915 1301 Fail 0.0015 9390 138321 1473 Fail 0.0016 8729 136525 1564 Fail 0.0016 8156 134728 1651 Fail 0.0017 7593 132718 1747 Fail 0.0018 6590 128333 1947 Fail 0.0018 6590 128333 1947 Fail 0.0018 6145 125980 2050 Fail 0.0018 5781 123756 2140 Fail 0.0019 5431 121510 2237 Fail 0.0019 5431 121510 2237 Fail 0.0020 4808 117510 2237 Fail 0.0021 4254 113596 2670 Fail 0.0021 4254 113596 2670 Fail 0.0022 37					
0.0014 10902 141915 1301 Fail 0.0015 9390 138321 1473 Fail 0.0016 8729 136525 1564 Fail 0.0016 8156 134728 1651 Fail 0.0017 7593 132718 1747 Fail 0.0018 6590 128333 1947 Fail 0.0018 6590 128333 1947 Fail 0.0018 6545 125980 2050 Fail 0.0018 5781 123756 2140 Fail 0.0019 5431 121510 2237 Fail 0.0019 5431 121510 2237 Fail 0.0020 4808 117510 2244 Fail 0.0021 4254 113596 2670 Fail 0.0021 4254 113596 2670 Fail 0.0022 3784 109767 2900 Fail 0.0023 333					
0.0015 10117 140075 1384 Fail 0.0016 8729 138321 1473 Fail 0.0016 8156 134728 1651 Fail 0.0017 7593 132718 1747 Fail 0.0017 7071 130643 1847 Fail 0.0018 6590 128333 1947 Fail 0.0018 6145 125980 2050 Fail 0.0018 5781 123756 2140 Fail 0.0019 5431 121510 2237 Fail 0.0019 5103 119456 2340 Fail 0.0020 4528 115542 2551 Fail 0.0021 4254 113596 2670 Fail 0.0021 4017 111692 2780 Fail 0.0022 3784 109767 2900 Fail 0.0023 3339 106003 3174 Fail 0.0023 313					
0.0015 9390 138321 1473 Fail 0.0016 8729 136525 1564 Fail 0.0016 8156 134728 1651 Fail 0.0017 7593 132718 1747 Fail 0.0018 6590 128333 1947 Fail 0.0018 6145 125980 2050 Fail 0.0018 5781 123756 2140 Fail 0.0019 5431 121510 2237 Fail 0.0019 5431 121510 2237 Fail 0.0020 4808 117510 2340 Fail 0.0020 4528 115542 2551 Fail 0.0021 4017 111692 2780 Fail 0.0021 4017 111692 2780 Fail 0.0022 3546 107864 3041 Fail 0.0023 3138 104057 3316 Fail 0.0024 2787					
0.0016 8729 136525 1564 Fail 0.0016 8156 134728 1651 Fail 0.0017 7593 132718 1747 Fail 0.0017 7071 130643 1847 Fail 0.0018 6590 128333 1947 Fail 0.0018 6781 123756 2140 Fail 0.0019 5431 121510 2237 Fail 0.0019 5431 121510 2237 Fail 0.0020 4808 117510 2237 Fail 0.0020 4808 117510 2244 Fail 0.0021 4254 113596 2670 Fail 0.0021 4017 111692 2780 Fail 0.0022 3784 109767 2900 Fail 0.0022 3546 107864 3041 Fail 0.0023 3138 104057 3316 Fail 0.0024 2787		-			
0.0016 8156 134728 1651 Fail 0.0017 7593 132718 1747 Fail 0.0017 7071 130643 1847 Fail 0.0018 6590 128333 1947 Fail 0.0018 6145 125980 2050 Fail 0.0018 5781 123756 2140 Fail 0.0019 5431 121510 2237 Fail 0.0019 5403 119456 2340 Fail 0.0020 4808 117510 2444 Fail 0.0020 4528 115542 2551 Fail 0.0021 4254 113596 2670 Fail 0.0022 3784 109767 2900 Fail 0.0022 3784 109767 2900 Fail 0.0023 3138 104057 3316 Fail 0.0023 3138 104057 3316 Fail 0.0024 2787					
0.0017 7593 132718 1747 Fail 0.0017 7071 130643 1847 Fail 0.0018 6590 128333 1947 Fail 0.0018 6145 125980 2050 Fail 0.0018 5781 123756 2140 Fail 0.0019 5431 121510 2237 Fail 0.0019 5103 119456 2340 Fail 0.0020 4808 117510 2444 Fail 0.0020 4528 115542 2551 Fail 0.0021 4254 113596 2670 Fail 0.0021 4017 111692 2780 Fail 0.0022 3546 107864 3041 Fail 0.0023 3339 106003 3174 Fail 0.0023 3138 104057 3316 Fail 0.0024 2787 100228 3596 Fail 0.0024 2597					
0.0017 7071 130643 1847 Fail 0.0018 6590 128333 1947 Fail 0.0018 6145 125980 2050 Fail 0.0018 5781 123756 2140 Fail 0.0019 5431 121510 2237 Fail 0.0019 5431 121510 2237 Fail 0.0020 4808 117510 2444 Fail 0.0020 4528 115542 2551 Fail 0.0021 4254 113596 2670 Fail 0.0021 4017 111692 2780 Fail 0.0022 3784 109767 2900 Fail 0.0023 3339 106003 3174 Fail 0.0023 3138 104057 3316 Fail 0.0023 3339 106003 3174 Fail 0.0024 2787 100228 3596 Fail 0.0023 318<					
0.0018 6590 128333 1947 Fail 0.0018 6145 125980 2050 Fail 0.0018 5781 123756 2140 Fail 0.0019 5431 121510 2237 Fail 0.0019 5103 119456 2340 Fail 0.0020 4808 117510 2444 Fail 0.0020 4528 115542 2551 Fail 0.0021 4254 113596 2670 Fail 0.0021 4017 111692 2780 Fail 0.0022 3784 109767 2900 Fail 0.0023 3346 107864 3041 Fail 0.0023 3138 104057 3316 Fail 0.0023 3138 104057 3316 Fail 0.0024 2787 100228 3596 Fail 0.0024 2787 100228 3596 Fail 0.0024 2597					
0.0018 6145 125980 2050 Fail 0.0018 5781 123756 2140 Fail 0.0019 5431 121510 2237 Fail 0.0019 5103 119456 2340 Fail 0.0020 4808 117510 2444 Fail 0.0020 4528 115542 2551 Fail 0.0021 4017 111692 2780 Fail 0.0022 3784 109767 2900 Fail 0.0023 3346 107864 3041 Fail 0.0023 3339 106003 3174 Fail 0.0023 3138 104057 3316 Fail 0.0023 2954 102174 3458 Fail 0.0024 2787 100228 3596 Fail 0.0024 2597 98260 3783 Fail 0.0025 2449 96442 3938 Fail 0.0026 2162 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
0.0018 5781 123756 2140 Fail 0.0019 5431 121510 2237 Fail 0.0019 5103 119456 2340 Fail 0.0020 4808 117510 2444 Fail 0.0021 4254 113596 2670 Fail 0.0021 4017 111692 2780 Fail 0.0022 3784 109767 2900 Fail 0.0023 3546 107864 3041 Fail 0.0023 3339 106003 3174 Fail 0.0023 3138 104057 3316 Fail 0.0023 2954 102174 3458 Fail 0.0024 2787 100228 3596 Fail 0.0024 2787 100228 3596 Fail 0.0025 2449 96442 3938 Fail 0.0026 2162 92656 4285 Fail 0.0027 1896 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
0.0019 5431 121510 2237 Fail 0.0019 5103 119456 2340 Fail 0.0020 4808 117510 2444 Fail 0.0020 4528 115542 2551 Fail 0.0021 4254 113596 2670 Fail 0.0021 4017 111692 2780 Fail 0.0022 3784 109767 2900 Fail 0.0023 3346 107864 3041 Fail 0.0023 3339 106003 3174 Fail 0.0023 3138 104057 3316 Fail 0.0023 3138 104057 3316 Fail 0.0024 2787 100228 3596 Fail 0.0024 2597 98260 3783 Fail 0.0025 2449 96442 3938 Fail 0.0026 2162 92656 4285 Fail 0.0027 1896 <td></td> <td>5781</td> <td></td> <td></td> <td></td>		5781			
0.0019 5103 119456 2340 Fail 0.0020 4808 117510 2444 Fail 0.0020 4528 115542 2551 Fail 0.0021 4254 113596 2670 Fail 0.0021 4017 111692 2780 Fail 0.0022 3784 109767 2900 Fail 0.0023 3346 107864 3041 Fail 0.0023 3339 106003 3174 Fail 0.0023 3138 104057 3316 Fail 0.0023 2954 102174 3458 Fail 0.0024 2787 100228 3596 Fail 0.0024 2597 98260 3783 Fail 0.0025 2449 96442 3938 Fail 0.0025 2304 94538 4103 Fail 0.0026 2162 92656 4285 Fail 0.0027 1896 <td></td> <td>5431</td> <td></td> <td></td> <td></td>		5431			
0.0020 4528 115542 2551 Fail 0.0021 4254 113596 2670 Fail 0.0021 4017 111692 2780 Fail 0.0022 3784 109767 2900 Fail 0.0022 3546 107864 3041 Fail 0.0023 3339 106003 3174 Fail 0.0023 3138 104057 3316 Fail 0.0023 2954 102174 3458 Fail 0.0024 2787 100228 3596 Fail 0.0024 2597 98260 3783 Fail 0.0025 2449 96442 3938 Fail 0.0025 2449 96442 3938 Fail 0.0026 2162 92656 4285 Fail 0.0026 2162 92656 4285 Fail 0.0027 1896 89149 4701 Fail 0.0028 1687		5103		2340	
0.0021 4254 113596 2670 Fail 0.0021 4017 111692 2780 Fail 0.0022 3784 109767 2900 Fail 0.0023 3339 106003 3174 Fail 0.0023 3138 104057 3316 Fail 0.0023 2954 102174 3458 Fail 0.0024 2787 100228 3596 Fail 0.0024 2597 98260 3783 Fail 0.0025 2449 96442 3938 Fail 0.0025 2304 94538 4103 Fail 0.0025 2304 94538 4103 Fail 0.0026 2162 92656 4285 Fail 0.0027 1896 89149 4701 Fail 0.0027 1896 89149 4701 Fail 0.0028 1687 85748 5082 Fail 0.0028 1588	0.0020	4808	117510	2444	Fail
0.0021 4017 111692 2780 Fail 0.0022 3784 109767 2900 Fail 0.0023 3546 107864 3041 Fail 0.0023 3339 106003 3174 Fail 0.0023 3138 104057 3316 Fail 0.0023 2954 102174 3458 Fail 0.0024 2787 100228 3596 Fail 0.0024 2597 98260 3783 Fail 0.0025 2449 96442 3938 Fail 0.0025 2304 94538 4103 Fail 0.0026 2162 92656 4285 Fail 0.0027 1896 89149 4701 Fail 0.0027 1790 87459 4885 Fail 0.0028 1687 85748 5082 Fail 0.0028 1588 84101 5296 Fail 0.0029 1381	0.0020		115542	2551	Fail
0.0022 3784 109767 2900 Fail 0.0022 3546 107864 3041 Fail 0.0023 3339 106003 3174 Fail 0.0023 2954 104057 3316 Fail 0.0024 2787 100228 3596 Fail 0.0024 2787 100228 3596 Fail 0.0024 2597 98260 3783 Fail 0.0025 2449 96442 3938 Fail 0.0025 2304 94538 4103 Fail 0.0026 2162 92656 4285 Fail 0.0026 2026 90860 4484 Fail 0.0027 1896 89149 4701 Fail 0.0027 1790 87459 4885 Fail 0.0028 1687 85748 5082 Fail 0.0028 1483 82347 5552 Fail 0.0029 1381	0.0021	4254	113596	2670	Fail
0.0022 3546 107864 3041 Fail 0.0023 3339 106003 3174 Fail 0.0023 2954 102174 3458 Fail 0.0024 2787 100228 3596 Fail 0.0024 2597 98260 3783 Fail 0.0025 2449 96442 3938 Fail 0.0025 2304 94538 4103 Fail 0.0026 2162 92656 4285 Fail 0.0026 2026 90860 4484 Fail 0.0027 1896 89149 4701 Fail 0.0027 1790 87459 4885 Fail 0.0028 1687 85748 5082 Fail 0.0028 1483 82347 5552 Fail 0.0029 1381 80700 5843 Fail 0.0029 1292 78925 6108 Fail 0.0031 1098	0.0021	4017		2780	Fail
0.0023 3339 106003 3174 Fail 0.0023 3138 104057 3316 Fail 0.0024 2787 100228 3596 Fail 0.0024 2597 98260 3783 Fail 0.0025 2449 96442 3938 Fail 0.0025 2304 94538 4103 Fail 0.0026 2162 92656 4285 Fail 0.0026 2026 90860 4484 Fail 0.0027 1896 89149 4701 Fail 0.0027 1790 87459 4885 Fail 0.0028 1687 85748 5082 Fail 0.0028 1483 82347 5552 Fail 0.0029 1381 80700 5843 Fail 0.0029 1292 78925 6108 Fail 0.0030 1217 77256 6348 Fail 0.0031 1048	0.0022	3784	109767		Fail
0.0023 3138 104057 3316 Fail 0.0023 2954 102174 3458 Fail 0.0024 2787 100228 3596 Fail 0.0024 2597 98260 3783 Fail 0.0025 2449 96442 3938 Fail 0.0025 2304 94538 4103 Fail 0.0026 2162 92656 4285 Fail 0.0026 2026 90860 4484 Fail 0.0027 1896 89149 4701 Fail 0.0027 1790 87459 4885 Fail 0.0028 1687 85748 5082 Fail 0.0028 1588 84101 5296 Fail 0.0029 1381 80700 5843 Fail 0.0029 1292 78925 6108 Fail 0.0030 1217 77256 6348 Fail 0.0031 1048					Fail
0.0023 2954 102174 3458 Fail 0.0024 2787 100228 3596 Fail 0.0024 2597 98260 3783 Fail 0.0025 2449 96442 3938 Fail 0.0025 2304 94538 4103 Fail 0.0026 2162 92656 4285 Fail 0.0026 2026 90860 4484 Fail 0.0027 1896 89149 4701 Fail 0.0027 1790 87459 4885 Fail 0.0028 1687 85748 5082 Fail 0.0028 1588 84101 5296 Fail 0.0029 1381 80700 5843 Fail 0.0029 1381 80700 5843 Fail 0.0030 1217 77256 6348 Fail 0.0031 1098 74005 6739 Fail 0.0031 1048					Fail
0.0024 2787 100228 3596 Fail 0.0024 2597 98260 3783 Fail 0.0025 2449 96442 3938 Fail 0.0025 2304 94538 4103 Fail 0.0026 2162 92656 4285 Fail 0.0026 2026 90860 4484 Fail 0.0027 1896 89149 4701 Fail 0.0027 1790 87459 4885 Fail 0.0028 1687 85748 5082 Fail 0.0028 1588 84101 5296 Fail 0.0028 1483 82347 5552 Fail 0.0029 1381 80700 5843 Fail 0.0029 1292 78925 6108 Fail 0.0030 1217 77256 6348 Fail 0.0031 1098 74005 6739 Fail 0.0031 1048					
0.0024 2597 98260 3783 Fail 0.0025 2449 96442 3938 Fail 0.0026 2162 92656 4285 Fail 0.0026 2026 90860 4484 Fail 0.0027 1896 89149 4701 Fail 0.0027 1790 87459 4885 Fail 0.0028 1687 85748 5082 Fail 0.0028 1588 84101 5296 Fail 0.0028 1483 82347 5552 Fail 0.0029 1381 80700 5843 Fail 0.0029 1292 78925 6108 Fail 0.0030 1217 77256 6348 Fail 0.0031 1098 74005 6739 Fail 0.0031 1048 72444 6912 Fail 0.0032 997 70904 7111 Fail 0.0033 883 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
0.0025 2449 96442 3938 Fail 0.0025 2304 94538 4103 Fail 0.0026 2162 92656 4285 Fail 0.0026 2026 90860 4484 Fail 0.0027 1896 89149 4701 Fail 0.0027 1790 87459 4885 Fail 0.0028 1687 85748 5082 Fail 0.0028 1588 84101 5296 Fail 0.0028 1483 82347 5552 Fail 0.0029 1381 80700 5843 Fail 0.0029 1292 78925 6108 Fail 0.0030 1217 77256 6348 Fail 0.0031 1098 74005 6739 Fail 0.0031 1048 72444 6912 Fail 0.0032 997 70904 7111 Fail 0.0033 883 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
0.0025 2304 94538 4103 Fail 0.0026 2162 92656 4285 Fail 0.0026 2026 90860 4484 Fail 0.0027 1896 89149 4701 Fail 0.0027 1790 87459 4885 Fail 0.0028 1687 85748 5082 Fail 0.0028 1588 84101 5296 Fail 0.0028 1483 82347 5552 Fail 0.0029 1381 80700 5843 Fail 0.0029 1381 80700 5843 Fail 0.0030 1217 77256 6348 Fail 0.0030 1155 75652 6549 Fail 0.0031 1098 74005 6739 Fail 0.0032 997 70904 7111 Fail 0.0033 883 67802 7678 Fail 0.0033 883					
0.0026 2162 92656 4285 Fail 0.0026 2026 90860 4484 Fail 0.0027 1896 89149 4701 Fail 0.0027 1790 87459 4885 Fail 0.0028 1687 85748 5082 Fail 0.0028 1588 84101 5296 Fail 0.0028 1483 82347 5552 Fail 0.0029 1381 80700 5843 Fail 0.0029 1292 78925 6108 Fail 0.0030 1217 77256 6348 Fail 0.0031 1098 74005 6739 Fail 0.0031 1048 72444 6912 Fail 0.0032 997 70904 7111 Fail 0.0033 883 67802 7678 Fail 0.0033 789 64808 8213 Fail 0.0034 743 6					
0.0026 2026 90860 4484 Fail 0.0027 1896 89149 4701 Fail 0.0027 1790 87459 4885 Fail 0.0028 1687 85748 5082 Fail 0.0028 1588 84101 5296 Fail 0.0028 1483 82347 5552 Fail 0.0029 1381 80700 5843 Fail 0.0029 1292 78925 6108 Fail 0.0030 1217 77256 6348 Fail 0.0031 1098 74005 6739 Fail 0.0031 1048 72444 6912 Fail 0.0032 997 70904 7111 Fail 0.0033 883 67802 7678 Fail 0.0033 883 67802 7678 Fail 0.0033 789 64808 8213 Fail 0.0034 743 63					
0.0027 1896 89149 4701 Fail 0.0027 1790 87459 4885 Fail 0.0028 1687 85748 5082 Fail 0.0028 1588 84101 5296 Fail 0.0028 1483 82347 5552 Fail 0.0029 1381 80700 5843 Fail 0.0029 1292 78925 6108 Fail 0.0030 1217 77256 6348 Fail 0.0030 1155 75652 6549 Fail 0.0031 1098 74005 6739 Fail 0.0031 1048 72444 6912 Fail 0.0032 997 70904 7111 Fail 0.0033 883 67802 7678 Fail 0.0033 887 66220 7911 Fail 0.0034 743 63354 8526 Fail 0.0034 743 63354 8526 Fail 0.0035 668 60594 9070 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
0.0027 1790 87459 4885 Fail 0.0028 1687 85748 5082 Fail 0.0028 1588 84101 5296 Fail 0.0028 1483 82347 5552 Fail 0.0029 1381 80700 5843 Fail 0.0029 1292 78925 6108 Fail 0.0030 1217 77256 6348 Fail 0.0030 1155 75652 6549 Fail 0.0031 1098 74005 6739 Fail 0.0032 997 70904 7111 Fail 0.0032 997 70904 7111 Fail 0.0033 883 67802 7678 Fail 0.0033 883 67802 7678 Fail 0.0034 743 63354 8526 Fail 0.0034 743 63354 8526 Fail 0.0035 668 6059					
0.0028 1687 85748 5082 Fail 0.0028 1588 84101 5296 Fail 0.0028 1483 82347 5552 Fail 0.0029 1381 80700 5843 Fail 0.0029 1292 78925 6108 Fail 0.0030 1217 77256 6348 Fail 0.0030 1155 75652 6549 Fail 0.0031 1098 74005 6739 Fail 0.0031 1048 72444 6912 Fail 0.0032 997 70904 7111 Fail 0.0032 930 69342 7456 Fail 0.0033 883 67802 7678 Fail 0.0033 837 66220 7911 Fail 0.0034 743 63354 8526 Fail 0.0034 743 63354 8526 Fail 0.0035 668 6059					
0.0028 1588 84101 5296 Fail 0.0028 1483 82347 5552 Fail 0.0029 1381 80700 5843 Fail 0.0029 1292 78925 6108 Fail 0.0030 1217 77256 6348 Fail 0.0030 1155 75652 6549 Fail 0.0031 1098 74005 6739 Fail 0.0031 1048 72444 6912 Fail 0.0032 997 70904 7111 Fail 0.0032 930 69342 7456 Fail 0.0033 883 67802 7678 Fail 0.0033 837 66220 7911 Fail 0.0034 743 63354 8526 Fail 0.0034 713 61985 8693 Fail 0.0035 668 60594 9070 Fail 0.0035 631 59119 9369 Fail					
0.0028 1483 82347 5552 Fail 0.0029 1381 80700 5843 Fail 0.0029 1292 78925 6108 Fail 0.0030 1217 77256 6348 Fail 0.0030 1155 75652 6549 Fail 0.0031 1098 74005 6739 Fail 0.0031 1048 72444 6912 Fail 0.0032 997 70904 7111 Fail 0.0032 930 69342 7456 Fail 0.0033 883 67802 7678 Fail 0.0033 837 66220 7911 Fail 0.0033 789 64808 8213 Fail 0.0034 743 63354 8526 Fail 0.0034 713 61985 8693 Fail 0.0035 668 60594 9070 Fail 0.0035 631 59119 9369 Fail					
0.0029 1381 80700 5843 Fail 0.0029 1292 78925 6108 Fail 0.0030 1217 77256 6348 Fail 0.0030 1155 75652 6549 Fail 0.0031 1098 74005 6739 Fail 0.0031 1048 72444 6912 Fail 0.0032 997 70904 7111 Fail 0.0032 930 69342 7456 Fail 0.0033 883 67802 7678 Fail 0.0033 837 66220 7911 Fail 0.0033 789 64808 8213 Fail 0.0034 743 63354 8526 Fail 0.0034 713 61985 8693 Fail 0.0035 668 60594 9070 Fail 0.0035 631 59119 9369 Fail					
0.0029 1292 78925 6108 Fail 0.0030 1217 77256 6348 Fail 0.0030 1155 75652 6549 Fail 0.0031 1098 74005 6739 Fail 0.0031 1048 72444 6912 Fail 0.0032 997 70904 7111 Fail 0.0032 930 69342 7456 Fail 0.0033 883 67802 7678 Fail 0.0033 837 66220 7911 Fail 0.0033 789 64808 8213 Fail 0.0034 743 63354 8526 Fail 0.0034 713 61985 8693 Fail 0.0035 668 60594 9070 Fail 0.0035 631 59119 9369 Fail					
0.0030 1217 77256 6348 Fail 0.0030 1155 75652 6549 Fail 0.0031 1098 74005 6739 Fail 0.0031 1048 72444 6912 Fail 0.0032 997 70904 7111 Fail 0.0032 930 69342 7456 Fail 0.0033 883 67802 7678 Fail 0.0033 837 66220 7911 Fail 0.0033 789 64808 8213 Fail 0.0034 743 63354 8526 Fail 0.0034 713 61985 8693 Fail 0.0035 668 60594 9070 Fail 0.0035 631 59119 9369 Fail					
0.0030 1155 75652 6549 Fail 0.0031 1098 74005 6739 Fail 0.0031 1048 72444 6912 Fail 0.0032 997 70904 7111 Fail 0.0032 930 69342 7456 Fail 0.0033 883 67802 7678 Fail 0.0033 837 66220 7911 Fail 0.0033 789 64808 8213 Fail 0.0034 743 63354 8526 Fail 0.0034 713 61985 8693 Fail 0.0035 668 60594 9070 Fail 0.0035 631 59119 9369 Fail					
0.0031 1098 74005 6739 Fail 0.0031 1048 72444 6912 Fail 0.0032 997 70904 7111 Fail 0.0032 930 69342 7456 Fail 0.0033 883 67802 7678 Fail 0.0033 837 66220 7911 Fail 0.0033 789 64808 8213 Fail 0.0034 743 63354 8526 Fail 0.0034 713 61985 8693 Fail 0.0035 668 60594 9070 Fail 0.0035 631 59119 9369 Fail					
0.0031 1048 72444 6912 Fail 0.0032 997 70904 7111 Fail 0.0032 930 69342 7456 Fail 0.0033 883 67802 7678 Fail 0.0033 837 66220 7911 Fail 0.0033 789 64808 8213 Fail 0.0034 743 63354 8526 Fail 0.0034 713 61985 8693 Fail 0.0035 668 60594 9070 Fail 0.0035 631 59119 9369 Fail					
0.0032 997 70904 7111 Fail 0.0032 930 69342 7456 Fail 0.0033 883 67802 7678 Fail 0.0033 837 66220 7911 Fail 0.0033 789 64808 8213 Fail 0.0034 743 63354 8526 Fail 0.0034 713 61985 8693 Fail 0.0035 668 60594 9070 Fail 0.0035 631 59119 9369 Fail					
0.0032 930 69342 7456 Fail 0.0033 883 67802 7678 Fail 0.0033 837 66220 7911 Fail 0.0033 789 64808 8213 Fail 0.0034 743 63354 8526 Fail 0.0034 713 61985 8693 Fail 0.0035 668 60594 9070 Fail 0.0035 631 59119 9369 Fail					
0.0033 883 67802 7678 Fail 0.0033 837 66220 7911 Fail 0.0033 789 64808 8213 Fail 0.0034 743 63354 8526 Fail 0.0034 713 61985 8693 Fail 0.0035 668 60594 9070 Fail 0.0035 631 59119 9369 Fail					
0.0033 837 66220 7911 Fail 0.0033 789 64808 8213 Fail 0.0034 743 63354 8526 Fail 0.0034 713 61985 8693 Fail 0.0035 668 60594 9070 Fail 0.0035 631 59119 9369 Fail					
0.0033 789 64808 8213 Fail 0.0034 743 63354 8526 Fail 0.0034 713 61985 8693 Fail 0.0035 668 60594 9070 Fail 0.0035 631 59119 9369 Fail					
0.0034 743 63354 8526 Fail 0.0034 713 61985 8693 Fail 0.0035 668 60594 9070 Fail 0.0035 631 59119 9369 Fail					
0.0034 713 61985 8693 Fail 0.0035 668 60594 9070 Fail 0.0035 631 59119 9369 Fail					
0.0035 631 59119 9369 Fail	0.0034		61985		Fail
	0.0035	668	60594	9070	Fail
0.0036 596 57750 9689 Fail					
	0.0036	596	57750	9689	Fail

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Presribed 2/10/2022 4:52:48 PM Page 15

Water Quality

Water Quality
Water Quality BMP Flow and Volume for POC #1
On-line facility volume: 0 acre-feet
On-line facility target flow: 0 cfs.
Adjusted for 15 min: 0 cfs.
Off-line facility target flow: 0 cfs.
Adjusted for 15 min: 0 cfs.

Presribed 2/10/2022 4:52:48 PM Page 16

LID Report

LID Technique	Used for Treatment?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Volume	Volume	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Tank 1 POC		11.27				0.00			
Total Volume Infiltrated		11.27	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.

IMPLND Changes


No IMPLND changes have been made.

Presribed 2/10/2022 4:53:15 PM Page 18

Appendix Predeveloped Schematic

Basin 0.08ac	1			
o.oodo				

Mitigated Schematic

Predeveloped UCI File

```
RUN
GLOI
WI
```

```
GLOBAL
 WWHM4 model simulation
                   END 3 0
 START 1948 10 01
                          2009 09 30
 RUN INTERP OUTPUT LEVEL
 RESUME 0 RUN 1
                               UNIT SYSTEM 1
END GLOBAL
FILES
<File> <Un#>
          <---->***
<-ID->
WDM
        26
          Presribed.wdm
MESSU
        25
          PrePresribed.MES
        27
           PrePresribed.L61
        28
           PrePresribed.L62
        30 POCPresribed1.dat
END FILES
OPN SEQUENCE
  INGRP
          10
               INDELT 00:15
   PERLND
            501
   COPY
   DISPLY
  END INGRP
END OPN SEQUENCE
DISPLY
 DISPLY-INFO1
  # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
  Basin 1
                                             1 2 30
 END DISPLY-INFO1
END DISPLY
COPY
 TIMESERIES
 # - # NPT NMN ***
  1 1
)1 1
           1
 501
             1
 END TIMESERIES
END COPY
GENER
 OPCODE
 # # OPCD ***
 END OPCODE
 PARM
          K ***
 #
 END PARM
END GENER
PERLND
 GEN-INFO
  <PLS ><----Name---->NBLKS Unit-systems Printer ***
                        User t-series Engl Metr ***
                              in out
                        1
  10 C, Forest, Flat
 END GEN-INFO
 *** Section PWATER***
 ACTIVITY
  # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
10 0 0 1 0 0 0 0 0 0 0 0
 END ACTIVITY
 PRINT-INFO
  END PRINT-INFO
```

```
PWAT-PARM1
   <PLS > PWATER variable monthly parameter value flags ***
  # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***
10 0 0 0 0 0 0 0 0 0 0
 END PWAT-PARM1
 PWAT-PARM2
  END PWAT-PARM2
 PWAT-PARM3
  PWAT-PARM3

<PLS > PWATER input info: Part 3 ***

# - # ***PETMAX PETMIN INFEXP INFILD DEEPFR

10 0 0 2 2 0
                                                          BASETP
                                                0 0
 END PWAT-PARM3
 PWAT-PARM4
  <PLS > PWATER input info: Part 4
  # - # CEPSC UZSN NSUR INTFW IRC LZETP ***
10 0.2 0.5 0.35 6 0.5 0.7
 END PWAT-PARM4
 PWAT-STATE1
  <PLS > *** Initial conditions at start of simulation
    ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
   # - # *** CEPS SURS UZS IFWS LZS AGWS LO 0 0 0 2.5 1
                                                                    GWVS
  10
 END PWAT-STATE1
END PERLND
IMPLND
 GEN-INFO
  <PLS ><----- Name----> Unit-systems Printer ***
  # - #
                           User t-series Engl Metr ***
                                  in out
 END GEN-INFO
 *** Section IWATER***
 ACTIVITY
   <PLS > ******** Active Sections **********************
   # - # ATMP SNOW IWAT SLD IWG IQAL ***
 END ACTIVITY
 PRINT-INFO
   <ILS > ******* Print-flags ****** PIVL PYR
   # - # ATMP SNOW IWAT SLD IWG IQAL *******
 END PRINT-INFO
  <PLS > IWATER variable monthly parameter value flags ***
   # - # CSNO RTOP VRS VNN RTLI ***
 END IWAT-PARM1
 IWAT-PARM2
   <PLS > IWATER input info: Part 2 ***
# - # *** LSUR SLSUR NSUR RETSC
 END IWAT-PARM2
 IWAT-PARM3
   <PLS > IWATER input info: Part 3
   # - # ***PETMAX PETMIN
 END IWAT-PARM3
   <PLS > *** Initial conditions at start of simulation
   # - # *** RETS SURS
 END IWAT-STATE1
```

```
SCHEMATIC
                  <--Area--> <-Target-> MBLK ***
<-factor-> <Name> # Tbl# ***
<-Source->
<Name> #
Basin 1***
                     0.078765 COPY 501 12
0.078765 COPY 501 13
PERLND 10
PERLND 10
*****Routing*****
END SCHEMATIC
NETWORK
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
END NETWORK
RCHRES
 GEN-INFO
  RCHRES Name Nexits Unit Systems Printer
  # - #<----- User T-series Engl Metr LKFG
                                                        * * *
                                                        * * *
                               in out
 END GEN-INFO
 *** Section RCHRES***
 ACTIVITY
  # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG ***
 END ACTIVITY
 PRINT-INFO
  <PLS > ******** Print-flags ******** PIVL PYR
   # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR *******
 END PRINT-INFO
 HYDR-PARM1
  RCHRES Flags for each HYDR Section
  # - # VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each FG FG FG possible exit *** possible exit possible exit ***
 END HYDR-PARM1
 HYDR-PARM2
 # - # FTABNO LEN DELTH STCOR
                                         KS
                                               DB50
 <----><----><---->
                                                        * * *
 END HYDR-PARM2
  RCHRES Initial conditions for each HYDR section
  # ** ...
*** ac-ft
 <---->
                <---><---><---><--->
 END HYDR-INIT
END RCHRES
SPEC-ACTIONS
END SPEC-ACTIONS
FTABLES
END FTABLES
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<Name> # # ***
```

	EVAP EVAP	ENGL ENGL	0.76 0.76	PERLND 1 IMPLND 1	. 999 EXTI . 999 EXTI	
END EXT SO	URCES					
<name> #</name>	<-Grp>	<name> # :</name>	#<-factor->strg	<name> #</name>		Tsys Tgap Amd *** tem strg strg*** ENGL REPL
MASS-LINK <volume> <name> MASS-LIN PERLND END MASS</name></volume>	K PWATER	<name> # : 12</name>	> <mult> #<-factor-> 0.083333</mult>	<target> <name></name></target>	<-Gi	rp> <-Member->***
MASS-LIN PERLND END MASS	PWATER	13 IFWO 13	0.083333	COPY	INP	JT MEAN

END MASS-LINK

END RUN

Mitigated UCI File RUN GLOBAL WWHM4 model simulation START 1948 10 01 END 2009 09 30 RUN INTERP OUTPUT LEVEL 3 0 RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <---->*** <-ID-> WDM 26 Presribed.wdm MESSU 25 MitPresribed.MES 27 MitPresribed.L61 28 MitPresribed.L62 30 POCPresribed1.dat END FILES OPN SEQUENCE INGRP INDELT 00:15 1 IMPLND 1 1 RCHRES COPY COPY 501 DISPLY 1 END INGRP END OPN SEQUENCE DISPLY DISPLY-INFO1 # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND Tank 1 1 2 30 1 MAX END DISPLY-INFO1 END DISPLY COPY TIMESERIES # - # NPT NMN *** 1 1 1)1 1 1 END TIMESERIES END COPY GENER OPCODE # # OPCD *** END OPCODE PARM K *** # END PARM END GENER PERLND GEN-INFO <PLS ><----Name---->NBLKS Unit-systems Printer *** User t-series Engl Metr *** in out END GEN-INFO *** Section PWATER***

```
<PLS > ******** Active Sections *********************
 # - # ATMP SNOW PWAT SED PST PWG POAL MSTL PEST NITR PHOS TRAC ***
END ACTIVITY
PRINT-INFO
 # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ********
END PRINT-INFO
PWAT-PARM1
                           2/10/2022 4:53:16 PM
```

```
<PLS > PWATER variable monthly parameter value flags ***
   # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***
 END PWAT-PARM1
 PWAT-PARM2

<PLS > PWATER input info: Part 2 ***
# - # ***FOREST LZSN INFILT LSUR SLSUR KVARY AGWRC

 END PWAT-PARM2
 PWAT-PARM3
   AT-PARM3

<PLS > PWATER input info: Part 3 ***

# - # ***PETMAX PETMIN INFEXP INFILD DEEPFR BASETP
   <PLS >
                                                                AGWETP
 END PWAT-PARM3
 PWAT-PARM4
  <PLS > PWATER input info: Part 4 ***
# - # CEPSC UZSN NSUR INTFW IRC LZETP ***
                                                              ***
 END PWAT-PARM4
 PWAT-STATE1
  <PLS > *** Initial conditions at start of simulation
          ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
   # - # *** CEPS SURS UZS IFWS LZS AGWS GWVS
 END PWAT-STATE1
END PERLND
TMPT/ND
 GEN-INFO
  <PLS ><-----Name----> Unit-systems Printer ***
   # - #
                         User t-series Engl Metr ***
                            in out ***
1 1 1 27 0
  1
        ROADS/FLAT
 END GEN-INFO
 *** Section IWATER***
 ACTIVITY
  # - # ATMP SNOW IWAT SLD IWG IQAL
1 0 0 1 0 0 0
 END ACTIVITY
 PRINT-INFO
   <ILS > ******* Print-flags ******* PIVL PYR
  # - # ATMP SNOW IWAT SLD IWG IQAL ********
1 0 0 4 0 0 0 1 9
 END PRINT-INFO
 IWAT-PARM1
  <PLS > IWATER variable monthly parameter value flags ***
   # - # CSNO RTOP VRS VNN RTLI ***
1 0 0 0 0 0
 END IWAT-PARM1
 END IWAT-PARM2
 IWAT-PARM3
   # - # ***PETMAX PETMIN
1 0 0
   1
 END IWAT-PARM3
 IWAT-STATE1
   <PLS > *** Initial conditions at start of simulation
   # - # *** RETS SURS
             0
   1
 END IWAT-STATE1
```

SPEC-ACTIONS END SPEC-ACTIONS

END RCHRES

END HYDR-INIT

1 0

4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

FTABLES FTABLE	1				
91	Area (acres) 0.000000 0.000626 0.000880 0.001071 0.001230 0.001367 0.001489 0.001599 0.001791 0.001876 0.002029 0.002029 0.002028 0.0022336 0.002238 0.002338 0.002436 0.002481 0.002525 0.002603 0.002639 0.002673 0.002765 0.002763 0.002789 0.002876 0.002894 0.002910 0.002924 0.002937 0.002938 0.002988 0.002988 0.002988 0.002988 0.002988 0.002988 0.002978	Volume (acre-ft) 0.000000 0.00023 0.000065 0.000120 0.000184 0.000256 0.000336 0.000421 0.000513 0.000610 0.000712 0.000818 0.001284 0.001409 0.001537 0.001669 0.001803 0.001939 0.001939 0.002509 0.002657 0.002806 0.002957 0.003110 0.003264 0.003420 0.003577 0.003735 0.003894 0.00454 0.004216 0.004378 0.00454 0.004378 0.00454 0.00454 0.00454 0.00454 0.00454 0.00454 0.00454 0.00454 0.00454 0.00454 0.00454 0.00454 0.00454 0.00454 0.004552 0.005528 0.005694 0.005363 0.005528 0.005694 0.006526 0.006852 0.006852 0.007179 0.007342 0.007504 0.007665 0.007826 0.007985 0.008763 0.008763 0.008763 0.008763	Outflow1 (cfs) 0.000000 0.001599 0.002261 0.002770 0.003198 0.003576 0.003917 0.004231 0.004523 0.004797 0.005537 0.005537 0.005537 0.005537 0.005537 0.005537 0.005537 0.005538 0.006784 0.006593 0.006784 0.006970 0.007151 0.007328 0.007500 0.007669 0.007669 0.007834 0.007995 0.008461 0.008611 0.008758 0.008461 0.008758 0.00946 0.009594 0.009594 0.009594 0.009594 0.009594 0.009594 0.009594 0.009594 0.009594 0.009594 0.009727 0.00985 0.011077 0.010845 0.010607 0.011531 0.01279 0.012792 0.012792	Velocity (ft/sec)	Travel Time*** (Minutes)***

```
3.611111 0.002673 0.009063 0.012892
  3.666667 0.002639 0.009211 0.012991
  3.722222 0.002603 0.009356 0.013089
  3.777778 0.002565 0.009500 0.013186
  3.833333 0.002525 0.009641 0.013283
  3.888889 0.002481 0.009780 0.013379
  3.944444 0.002436 0.009917
                              0.023142
  4.000000 0.002388 0.010051
                             0.028071
  4.055556
           0.002336
                    0.010182
                              0.031750
  4.111111
           0.002282
                    0.010311
                              0.034827
           0.002224 0.010436
                             0.037531
  4.166667
  4.222222 0.002163
                    0.010558
                              0.039973
  4.277778 0.002098 0.010676 0.042220
  4.333333 0.002029 0.010791 0.044312
  4.388889 0.001955 0.010901 0.046279
  4.44444 0.001876 0.011008 0.048142
           0.001791
                    0.011110 0.049915
  4.500000
  4.555556
           0.001699
                    0.011207
                              0.259884
  4.611111
           0.001599
                    0.011298
                              0.641047
  4.666667
           0.001489
                    0.011384
                              1.129081
  4.722222 0.001367 0.011464
                             1.693273
  4.777778 0.001230 0.011536 2.306633
  4.833333 0.001071 0.011600 2.941740
  4.888889 0.000880 0.011654 3.570527
  4.944444 0.000626 0.011696 4.165587
  5.000000 0.001000 0.011720 4.702362
 END FTABLE 1
END FTABLES
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
                                                              <Name> # # ***
<Name> # <Name> # tem strg<-factor->strg <Name> # #
M \cap W
        2 PREC
                ENGL 1
                                   PERLND
                                                 1 999 EXTNL
                                                             PREC
                                        IMPLND 1 999 EXTNL
MDM
        2 PREC
                   ENGL
                         1
                                                             PREC
                 ENGL 0.76
                                       PERLND 1 999 EXTNL PETINP
MDM
        1 EVAP
M \cap M
        1 EVAP
                  ENGL
                          0.76
                                        IMPLND
                                                 1 999 EXTNL PETINP
END EXT SOURCES
EXT TARGETS
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd ***
<Name>
                <Name> # #<-factor->strg <Name> # <Name>
                                                           tem strg strg***
                                             1004 FLOW
RCHRES
        1 HYDR
                 RO
                       1 1 1
                                        WDM
                                                            ENGL
                                                                     REPL
       1 HYDR
               STAGE 1 1
                                1
                                        WDM
                                              1005 STAG
                                                           ENGL
RCHRES
                                                                     REPL
                               48.4
                                               701 FLOW
        1 OUTPUT MEAN 1 1
                                        WDM
                                                           ENGL
COPY
                                                                     REPL
      501 OUTPUT MEAN
COPY
                       1 1
                               48.4
                                        WDM
                                               801 FLOW
                                                           ENGL
                                                                     REPL
END EXT TARGETS
MASS-LINK
          <-Grp> <-Member-><--Mult-->
                                                      <-Grp> <-Member->***
<Volume>
                                         <Target>
                 <Name> # #<-factor->
                                                              <Name> # #***
<Name>
                                         <Name>
                  5
 MASS-LINK
                                                       INFLOW IVOL
IMPLND
         IWATER SURO
                           0.083333
                                        RCHRES
 END MASS-LINK
                  5
 MASS-LINK
                 15
          IWATER SURO
                           0.083333
                                        COPY
                                                       INPUT MEAN
 END MASS-LINK
                 15
 MASS-LINK
                 16
        ROFLOW
                                         COPY
RCHRES
                                                       INPUT MEAN
 END MASS-LINK
                 16
```

END MASS-LINK

END RUN

Predeveloped HSPF Message File

Mitigated HSPF Message File

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2022; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

Presribed 2/10/2022 4:53:16 PM Page 32

WWHM2012 PROJECT REPORT

General Model Information

Project Name: HLStormTech
Site Name: HL StormTech

Site Address:

City: Mercer Island
Report Date: 2/10/2022
Gage: Seatac

Data Start: 1948/10/01
Data End: 2009/09/30
Timestep: 15 Minute
Precip Scale: 1.000

Version Date: 2021/08/18

Version: 4.2.18

POC Thresholds

Low Flow Threshold for POC1: 50 Percent of the 2 Year

High Flow Threshold for POC1: 50 Year

HLStormTech 2/10/2022 4:03:59 PM Page 2

Landuse Basin Data Predeveloped Land Use

Basin 1

Bypass: No

GroundWater: No

Pervious Land Use acre C, Forest, Flat 0.078765

Pervious Total 0.078765

Impervious Land Use acre

Impervious Total 0

Basin Total 0.078765

Element Flows To:

Surface Interflow Groundwater

HLStormTech 2/10/2022 4:03:59 PM Page 3

Mitigated Land Use

Basin 1

Bypass: No

GroundWater: No

Pervious Land Use acre

Pervious Total 0

Impervious Land Use ROADS FLAT acre

0.078765

Impervious Total 0.078765

Basin Total 0.078765

Element Flows To:

Surface Interflow

SSD Table 1 SSD Table 1

Groundwater

HLStormTech 2/10/2022 4:03:59 PM Page 4

Routing Elements Predeveloped Routing

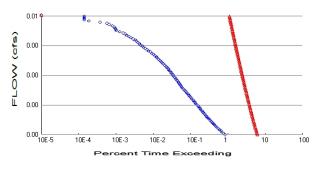
Mitigated Routing

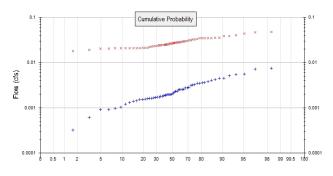
SSD Table 1

2.08 ft.

Depth:
Discharge Structure: 1
Riser Height:
Riser Diameter: 2 ft. 18 in.

Elevation:0 ft. Orifice 1 Diameter: 2 in.


Element Flows To:


Outlet 1 Outlet 2

SSD Table Hydraulic Table

Stage	Area	Volume	Outlet				
(feet)	(ac.)	(ac-ft.)	Struct	NotUsed	NotUsed	NotUsed	NotUsed
Ò.00Ó	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.080	0.003	0.000	0.031	0.000	0.000	0.000	0.000
0.170	0.003	0.001	0.045	0.000	0.000	0.000	0.000
0.250	0.003	0.001	0.054	0.000	0.000	0.000	0.000
0.330	0.003	0.001	0.062	0.000	0.000	0.000	0.000
0.420	0.003	0.002	0.070	0.000	0.000	0.000	0.000
0.500	0.003	0.002	0.077	0.000	0.000	0.000	0.000
0.580	0.003	0.003	0.083	0.000	0.000	0.000	0.000
0.670	0.003	0.004	0.089	0.000	0.000	0.000	0.000
0.750	0.003	0.004	0.094	0.000	0.000	0.000	0.000
0.830	0.003	0.005	0.099	0.000	0.000	0.000	0.000
0.920	0.003	0.006	0.104	0.000	0.000	0.000	0.000
1.000	0.003	0.006	0.109	0.000	0.000	0.000	0.000
1.080	0.003	0.007	0.113	0.000	0.000	0.000	0.000
1.170	0.003	0.007	0.117	0.000	0.000	0.000	0.000
1.250	0.003	0.008	0.121	0.000	0.000	0.000	0.000
1.330	0.003	0.008	0.125	0.000	0.000	0.000	0.000
1.420	0.003	0.009	0.129	0.000	0.000	0.000	0.000
1.500	0.003	0.009	0.133	0.000	0.000	0.000	0.000
1.580	0.003	0.010	0.136	0.000	0.000	0.000	0.000
1.670	0.003	0.010	0.140	0.000	0.000	0.000	0.000
1.750	0.003	0.010	0.144	0.000	0.000	0.000	0.000
1.830	0.003	0.011	0.147	0.000	0.000	0.000	0.000
1.920	0.003	0.011	0.150	0.000	0.000	0.000	0.000
2.000	0.003	0.011	0.154	0.000	0.000	0.000	0.000
2.080	0.003	0.012	0.516	0.000	0.000	0.000	0.000

Analysis Results POC 1

+ Predeveloped

x Mitigated

Predeveloped Landuse Totals for POC #1 Total Pervious Area: 0.078765

Total Impervious Area: 0

Mitigated Landuse Totals for POC #1

Total Pervious Area: 0

Total Impervious Area: 0.078765

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.002316

 5 year
 0.003637

 10 year
 0.004386

 25 year
 0.005179

 50 year
 0.00567

 100 year
 0.006087

Flow Frequency Return Periods for Mitigated. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.026707

 5 year
 0.032878

 10 year
 0.036905

 25 year
 0.041966

 50 year
 0.045733

 100 year
 0.049509

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1

Year	Predeveloped	Mitigated
1949	0.002	0.035
1950	0.003	0.034
1951	0.005	0.023
1952	0.002	0.021
1953	0.001	0.020
1954	0.002	0.021
1955	0.003	0.027
1956	0.003	0.026
1957	0.002	0.028
1958	0.002	0.021

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1983 1984 1985 1988 1988 1988 1988 1988 1989 1990 1991 1992 1993 1995 1996 1997 1998 1999 1999 1999 1999 1999 1999	0.002 0.003 0.002 0.001 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.003 0.002 0.001 0.004 0.001 0.004 0.001 0.004 0.001 0.004 0.001 0.004 0.001 0.004 0.001 0.004 0.001 0.004 0.001 0.001 0.004 0.001	0.021 0.022 0.025 0.021 0.025 0.024 0.028 0.021 0.031 0.034 0.025 0.029 0.031 0.018 0.025 0.030 0.021 0.030 0.035 0.035 0.038 0.032 0.021 0.028 0.038 0.032 0.021 0.028 0.032 0.021 0.028 0.032 0.021 0.028 0.025 0.032 0.021 0.028 0.025 0.032 0.021 0.028 0.025 0.032 0.021 0.028 0.025 0.032 0.021 0.028 0.025 0.032 0.021 0.028 0.025 0.032 0.021 0.028 0.025 0.032 0.021 0.028 0.025 0.032 0.021 0.028 0.025 0.032 0.021 0.028 0.025 0.032 0.021 0.028 0.025 0.032 0.021 0.023 0.029 0.026 0.027 0.033 0.027 0.031
2003	0.003	0.027
2004	0.003	0.047

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1

Predeveloped	
0.0074	0.0482
0.0071	0.0467
0.0055	0.0439
	0.0074 0.0071

4567891012345678901123456789012334567890142344567890123456789000000000000000000000000000000000000	0.0054 0.0045 0.0045 0.0043 0.0040 0.0038 0.0036 0.0035 0.0032 0.0032 0.0031 0.0028 0.0025 0.0025 0.0025 0.0025 0.0025 0.0023 0.0023 0.0023 0.0020 0.0020 0.0020 0.0020 0.0020 0.0019 0.0019 0.0019 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0016 0.0016 0.0016 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0010 0.0010 0.0009	0.0403 0.0384 0.0383 0.0355 0.0353 0.0350 0.0346 0.0345 0.0344 0.0334 0.0325 0.0324 0.0312 0.0297 0.0292 0.0290 0.0284 0.0272 0.0261 0.0274 0.0272 0.0266 0.0263 0.0262 0.0261 0.0250 0.0243 0.0243 0.0243 0.0244 0.0243 0.0244 0.0214 0.0214 0.0214 0.0210 0.0209 0.0209 0.0209 0.0209 0.0209 0.0209 0.0209 0.0209 0.0209 0.0209
54 55	0.0012 0.0010 0.0010	0.0208 0.0208

HLStormTech 2/10/2022 4:04:58 PM Page 9

Duration Flows

	_		_	
Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0012	17545	132546	755	Fail
0.0012	16170	129488	800	Fail
0.0012	14964	126558	845	Fail
0.0013	13860	123798	893	Fail
0.0013	12814	121103	945	Fail
0.0014	11819	118515	1002	Fail
0.0014	10902	115927	1063	Fail
0.0015	10117	113468	1121	Fail
0.0015	9390	111136	1183	Fail
0.0016	8729	108912	1247	Fail
0.0016	8156	106794	1309	Fail
0.0017	7593 7071	104677	1378	Fail
0.0017	7071	102645	1451	Fail
0.0018	6590 6145	100613	1526	Fail
0.0018 0.0018	6145 5781	98602 96806	1604	Fail
	5431	94902	1674 1747	Fail
0.0019				Fail
0.0019	5103 4808	93105	1824	Fail
0.0020 0.0020		91330	1899 1981	Fail
0.0020	4528 4254	89726	2068	Fail
	4254 4017	88015 86347	2149	Fail
0.0021 0.0022	3784	84785	2240	Fail Fail
0.0022	3546	83224	2346	Fail
0.0022	3339	81662	2445	Fail
0.0023	3138	80165	2554	Fail
0.0023	2954	78775	2666	Fail
0.0023	2787	77342	2775	Fail
0.0024	2597	75887	2922	Fail
0.0025	2449	74540	3043	Fail
0.0025	2304	73214	3177	Fail
0.0026	2162	71931	3327	Fail
0.0026	2026	70647	3487	Fail
0.0027	1896	69385	3659	Fail
0.0027	1790	68166	3808	Fail
0.0028	1687	66947	3968	Fail
0.0028	1588	65813	4144	Fail
0.0028	1483	64658	4359	Fail
0.0029	1381	63482	4596	Fail
0.0029	1292	62348	4825	Fail
0.0030	1217	61258	5033	Fail
0.0030	1155	60252	5216	Fail
0.0031	1098	59204	5391	Fail
0.0031	1048	58199	5553	Fail
0.0032	997	57172	5734	Fail
0.0032	930	56167	6039	Fail
0.0033	883	55140	6244	Fail
0.0033	837	54221	6478	Fail
0.0033	789	53280	6752	Fail
0.0034	743	52381	7049	Fail
0.0034	713	51483	7220	Fail
0.0035	668	50649	7582	Fail
0.0035	631	49836	7897	Fail
0.0036	596	49045	8229	Fail

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

HLStormTech 2/10/2022 4:04:58 PM Page 12

Water Quality

Water Quality
Water Quality BMP Flow and Volume for POC #1
On-line facility volume: 0 acre-feet
On-line facility target flow: 0 cfs.
Adjusted for 15 min: 0 cfs.
Off-line facility target flow: 0 cfs.
Adjusted for 15 min: 0 cfs.

HLStormTech 2/10/2022 4:04:58 PM Page 13

LID Report

LID Technique	Used for Treatment?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Volume	Volume	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
SSD Table 1 POC		11.27				0.00			
Total Volume Infiltrated		11.27	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

HLStormTech 2/10/2022 4:04:58 PM Page 14

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.

IMPLND Changes

No IMPLND changes have been made.

HLStormTech 2/10/2022 4:05:45 PM Page 15

Appendix Predeveloped Schematic

Basin 0.08ad	1			

Mitigated Schematic

Predeveloped UCI File

```
RUN
```

```
GLOBAL
 WWHM4 model simulation
                   END 3 0
 START 1948 10 01
                          2009 09 30
 RUN INTERP OUTPUT LEVEL
 RESUME 0 RUN 1
                               UNIT SYSTEM 1
END GLOBAL
FILES
<File> <Un#>
          <---->***
<-ID->
WDM
        26
          HLStormTech.wdm
MESSU
        25
          PreHLStormTech.MES
        27
           PreHLStormTech.L61
        28
           PreHLStormTech.L62
        30 POCHLStormTech1.dat
END FILES
OPN SEQUENCE
  INGRP
          10
               INDELT 00:15
   PERLND
            501
   COPY
   DISPLY
  END INGRP
END OPN SEQUENCE
DISPLY
 DISPLY-INFO1
  # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
  Basin 1
                                             1 2 30
 END DISPLY-INFO1
END DISPLY
COPY
 TIMESERIES
 # - # NPT NMN ***
  1 1
)1 1
           1
 501
             1
 END TIMESERIES
END COPY
GENER
 OPCODE
 # # OPCD ***
 END OPCODE
 PARM
          K ***
 #
 END PARM
END GENER
PERLND
 GEN-INFO
  <PLS ><----Name---->NBLKS Unit-systems Printer ***
                        User t-series Engl Metr ***
                              in out
                        1
  10 C, Forest, Flat
 END GEN-INFO
 *** Section PWATER***
 ACTIVITY
  # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
10 0 0 1 0 0 0 0 0 0 0 0
 END ACTIVITY
 PRINT-INFO
  END PRINT-INFO
```

```
PWAT-PARM1
   <PLS > PWATER variable monthly parameter value flags ***
  # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***
10 0 0 0 0 0 0 0 0 0 0
 END PWAT-PARM1
 PWAT-PARM2
  END PWAT-PARM2
 PWAT-PARM3
  PWAT-PARM3

<PLS > PWATER input info: Part 3 ***

# - # ***PETMAX PETMIN INFEXP INFILD DEEPFR

10 0 0 2 2 0
                                                          BASETP
                                                0 0
 END PWAT-PARM3
 PWAT-PARM4
  <PLS > PWATER input info: Part 4
  # - # CEPSC UZSN NSUR INTFW IRC LZETP ***
10 0.2 0.5 0.35 6 0.5 0.7
 END PWAT-PARM4
 PWAT-STATE1
  <PLS > *** Initial conditions at start of simulation
    ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
   # - # *** CEPS SURS UZS IFWS LZS AGWS LO 0 0 0 2.5 1
                                                                    GWVS
  10
 END PWAT-STATE1
END PERLND
IMPLND
 GEN-INFO
  <PLS ><----- Name----> Unit-systems Printer ***
  # - #
                           User t-series Engl Metr ***
                                  in out
 END GEN-INFO
 *** Section IWATER***
 ACTIVITY
   <PLS > ******** Active Sections **********************
   # - # ATMP SNOW IWAT SLD IWG IQAL ***
 END ACTIVITY
 PRINT-INFO
   <ILS > ******* Print-flags ******* PIVL PYR
   # - # ATMP SNOW IWAT SLD IWG IQAL *******
 END PRINT-INFO
  <PLS > IWATER variable monthly parameter value flags ***
   # - # CSNO RTOP VRS VNN RTLI ***
 END IWAT-PARM1
 IWAT-PARM2
   <PLS > IWATER input info: Part 2 ***
# - # *** LSUR SLSUR NSUR RETSC
 END IWAT-PARM2
 IWAT-PARM3
   <PLS > IWATER input info: Part 3
   # - # ***PETMAX PETMIN
 END IWAT-PARM3
   <PLS > *** Initial conditions at start of simulation
   # - # *** RETS SURS
 END IWAT-STATE1
```

```
SCHEMATIC
                  <--Area--> <-Target-> MBLK ***
<-factor-> <Name> # Tbl# ***
<-Source->
<Name> #
Basin 1***
                     0.078765 COPY 501 12
0.078765 COPY 501 13
PERLND 10
PERLND 10
*****Routing****
END SCHEMATIC
NETWORK
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
END NETWORK
RCHRES
 GEN-INFO
  RCHRES Name Nexits Unit Systems Printer
  # - #<----- User T-series Engl Metr LKFG
                                                        * * *
                                                        * * *
                               in out
 END GEN-INFO
 *** Section RCHRES***
 ACTIVITY
  # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG ***
 END ACTIVITY
 PRINT-INFO
  <PLS > ******** Print-flags ********* PIVL PYR
   # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR *******
 END PRINT-INFO
 HYDR-PARM1
  RCHRES Flags for each HYDR Section
  # - # VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each FG FG FG possible exit *** possible exit possible exit ***
 END HYDR-PARM1
 HYDR-PARM2
 # - # FTABNO LEN DELTH STCOR
                                         KS
                                               DB50
 <----><----><---->
                                                        * * *
 END HYDR-PARM2
  RCHRES Initial conditions for each HYDR section
  # ** ...
*** ac-ft
 <---->
                <---><---><---><--->
 END HYDR-INIT
END RCHRES
SPEC-ACTIONS
END SPEC-ACTIONS
FTABLES
END FTABLES
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<Name> # # ***
WDM
```

WDM WDM	1 EVAP 1 EVAP	ENGL ENGL	0.76 0.76	PERLND :	1 999 1 999	EXTNL EXTNL	PETINP PETINP	
END EXT	SOURCES							
<name></name>		<name> #</name>	> <mult>Tran #<-factor->strg 1 48.4</mult>	<name></name>		me>		
<name> MASS- PERLND</name>	> <-Grp>	<name> # :12</name>	> <mult> #<-factor-> 0.083333</mult>	<target> <name></name></target>		<-Grp>	<-Member <name> ‡</name>	
MASS- PERLND END M	LINK PWATER ASS-LINK	13 IFWO 13	0.083333	COPY		INPUT	MEAN	

END MASS-LINK

END RUN

Mitigated UCI File

RUN

```
GLOBAL
 WWHM4 model simulation
 START 1948 10 01 END 2009 09 30 RUN INTERP OUTPUT LEVEL 3 0
 RESUME 0 RUN 1
                                   UNIT SYSTEM 1
END GLOBAL
FILES
<File> <Un#>
           <---->***
<-ID->
WDM
         26 HLStormTech.wdm
MESSU
         25
           MitHLStormTech.MES
         27
            MitHLStormTech.L61
         28
             MitHLStormTech.L62
         30 POCHLStormTech1.dat
END FILES
OPN SEQUENCE
   INGRP
                  INDELT 00:15
            1
    IMPLND
             1
1
    RCHRES
    COPY
COPY
              501
    DISPLY
              1
   END INGRP
END OPN SEQUENCE
DISPLY
 DISPLY-INFO1
   # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
      SSD Table 1
                                                    1 2 30
   1
                                 MAX
 END DISPLY-INFO1
END DISPLY
COPY
 TIMESERIES
  # - # NPT NMN ***
   1 1 1
)1 1 1
 END TIMESERIES
END COPY
GENER
 OPCODE
  # # OPCD ***
 END OPCODE
 PARM
           K ***
  #
 END PARM
END GENER
PERLND
 GEN-INFO
   <PLS ><----Name---->NBLKS Unit-systems Printer ***
                            User t-series Engl Metr ***
                                   in out
 END GEN-INFO
 *** Section PWATER***
   <PLS > ******** Active Sections *********************
   # - # ATMP SNOW PWAT SED PST PWG POAL MSTL PEST NITR PHOS TRAC ***
 END ACTIVITY
 PRINT-INFO
   # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ********
 END PRINT-INFO
 PWAT-PARM1
```

```
<PLS > PWATER variable monthly parameter value flags ***
   # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***
 END PWAT-PARM1
 PWAT-PARM2

<PLS > PWATER input info: Part 2 ***
# - # ***FOREST LZSN INFILT LSUR SLSUR KVARY AGWRC

 END PWAT-PARM2
 PWAT-PARM3
   AT-PARM3

<PLS > PWATER input info: Part 3 ***

# - # ***PETMAX PETMIN INFEXP INFILD DEEPFR BASETP
   <PLS >
                                                                AGWETP
 END PWAT-PARM3
 PWAT-PARM4
  <PLS > PWATER input info: Part 4 ***
# - # CEPSC UZSN NSUR INTFW IRC LZETP ***
                                                             ***
 END PWAT-PARM4
 PWAT-STATE1
   <PLS > *** Initial conditions at start of simulation
          ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
   # - # *** CEPS SURS UZS IFWS LZS AGWS GWVS
 END PWAT-STATE1
END PERLND
TMPT/ND
 GEN-INFO
  <PLS ><-----Name----> Unit-systems Printer ***
   # - #
                         User t-series Engl Metr ***
                           in out ***
1 1 1 27 0
  1
        ROADS/FLAT
 END GEN-INFO
 *** Section IWATER***
 ACTIVITY
  # - # ATMP SNOW IWAT SLD IWG IQAL
1 0 0 1 0 0 0
 END ACTIVITY
 PRINT-INFO
   <ILS > ******* Print-flags ******* PIVL PYR
  # - # ATMP SNOW IWAT SLD IWG IQAL ********
1 0 0 4 0 0 0 1 9
 END PRINT-INFO
 IWAT-PARM1
  <PLS > IWATER variable monthly parameter value flags ***
   # - # CSNO RTOP VRS VNN RTLI ***
1 0 0 0 0 0
 END IWAT-PARM1
 END IWAT-PARM2
 IWAT-PARM3
   # - # ***PETMAX PETMIN
1 0 0
   1
 END IWAT-PARM3
 IWAT-STATE1
   <PLS > *** Initial conditions at start of simulation
   # - # *** RETS SURS
       0
   1
 END IWAT-STATE1
```

RCHRES Initial conditions for each HYDR section

SPEC-ACTIONS END SPEC-ACTIONS

```
FTABLES
  FTABLE
              1
   26
                        Volume Outflow1 Velocity Travel Time***
     Depth
                Area
                                 (cfs)
             (acres) (acre-ft)
                                          (ft/sec)
                                                      (Minutes) * * *
      (ft)
  0.000000
           0.000000 0.000000 0.000000
  0.080000 0.003122 0.000366 0.030702
  0.170000
           0.003122
                     0.000733
                                0.044755
  0.250000
            0.003122
                      0.001100
                                0.054274
  0.330000
            0.003122
                      0.001467
                                0.062356
  0.420000
            0.003122
                     0.001834
                                0.070347
  0.500000
            0.003122
                      0.002201
                                0.076754
  0.580000
            0.003122
                      0.002902
                                0.082667
            0.003122
                     0.003590
  0.670000
                                0.088850
  0.750000
            0.003122
                      0.004264
                                0.094005
            0.003122
                     0.004923
  0.830000
                                0.098891
            0.003122
                      0.005565
  0.920000
                                0.104115
  1,000000
            0.003122
                      0.006186
                                0.108547
  1.080000
            0.003122
                      0.006783
                                0.112806
  1.170000
            0.003122
                      0.007351
                                0.117412
  1.250000
            0.003122
                     0.007883
                                0.121359
  1.330000
           0.003122
                     0.008358
                                0.125183
  1.420000
           0.003122
                     0.008775
                                0.129349
  1.500000
           0.003122
                     0.009161
                                0.132943
                     0.009528
  1.580000
           0.003122
                                0.136442
  1.670000
           0.003122
                     0.009895
                                0.140274
  1.750000
           0.003122
                     0.010262
                                0.143594
  1.830000
            0.003122
                      0.010629
                                0.146840
  1.920000
           0.003122
                      0.010996
                                0.150407
           0.003122
  2.000000
                      0.011363
                                0.153509
                     0.011729
  2.080000 0.003122
                                0.516178
  END FTABLE 1
END FTABLES
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member->
                                                                               * * *
<Name>
         # <Name> # tem strg<-factor->strg <Name> # #
                                                                  <Name> # #
MDM
         2 PREC
                    ENGL
                            1
                                            PERLND
                                                     1 999 EXTNL
                                                                  PREC
WDM
         2 PREC
                    ENGL
                            1
                                            IMPLND
                                                     1 999 EXTNL
                                                                  PREC
                            0.76
MDM
                                                     1 999 EXTNL
         1 EVAP
                    ENGL
                                            PERLND
                                                                  PETINP
MDM
         1 EVAP
                    ENGL
                            0.76
                                            IMPLND
                                                     1 999 EXTNL
                                                                  PETINP
END EXT SOURCES
EXT TARGETS
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd ***
                  <Name> # #<-factor->strg <Name> # <Name>
<Name>
                                                                tem strq strq***
RCHRES
         1 HYDR
                  RO
                         1 1
                               1
                                            MDM
                                                  1000 FLOW
                                                                ENGL
                                                                          REPL
                         1 1
                                                  1001 STAG
                  STAGE
                                    1
                                            WDM
RCHRES
         1 HYDR
                                                                ENGL
                                                                          REPL
         1 OUTPUT MEAN
                         1 1
                                 48.4
                                                   701 FLOW
COPY
                                            MDM
                                                                ENGL
                                                                          REPL
COPY
       501 OUTPUT MEAN
                         1 1
                                 48.4
                                            MDM
                                                   801 FLOW
                                                                ENGL
                                                                          REPL
END EXT TARGETS
MASS-LINK
                                                           <-Grp> <-Member->***
           <-Grp> <-Member-><--Mult-->
<Volume>
                                            <Target>
                  <Name> # #<-factor->
<Name>
                                            <Name>
                                                                  <Name> # #***
  MASS-LINK
                   5
                             0.083333
                                            RCHRES
                                                           INFLOW IVOL
IMPLND
          IWATER SURO
  END MASS-LINK
                   5
  MASS-LINK
                  15
          IWATER SURO
                             0.083333
                                            COPY
                                                           INPUT
                                                                  MEAN
  END MASS-LINK
                  15
  MASS-LINK
                  16
RCHRES
          ROFLOW
                                            COPY
                                                           INPUT MEAN
  END MASS-LINK
                  16
```

Predeveloped HSPF Message File

Mitigated HSPF Message File

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2022; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

HLStormTech 2/10/2022 4:05:47 PM Page 29